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Abstract

We experimentally explore sellers’ dynamic pricing strategies in a multi-unit search

environment with stochastic buyer arrivals. Building on Carrasco and Smith (2017), our

laboratory design examines how reservation prices adapt to inventory levels and demand

distributions, as well as to deadlines. Despite theoretical predictions suggesting that

higher inventory levels and imminent deadlines reduce reservation prices, our findings

reveal negligible effects of both factors on pricing behavior. Our experimental results

reveal unexplored dynamics in multi-unit search environments, underscoring the need for

further empirical research to bridge the gap between theory and observed seller behavior.
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1 Introduction

Search models provide elegant and powerful theoretical frameworks for analyzing the in-

centives that shape equilibria in decentralized environments, especially in contexts involving

transaction frictions in labor, monetary, and financial markets. However, to derive clear equi-

librium insights, most search models simplify the trading environment by assuming that agents

are restricted to trading single units or that a competitive market exists. These limitations

were addressed by Carrasco and Smith (2017), who provided a theoretical framework to ac-

commodate multiple indivisible units. Among their most significant findings are that optimal

reservation prices fall as the seller holds more units.

The framework proposed by Carrasco and Smith (2017) faces significant practical challenges

in empirical validation, primarily due to the scarcity of datasets that capture multi-unit trading

dynamics. While digital platforms like eBay or Ticketmaster could provide relevant data, these

datasets are rare, often incomplete, and private, as noted by Einav and Levin (2014). Moreover,

the applicability of these insights extends beyond online platforms to other industries, such as

airlines selling multiple tickets for the same flight or hotels managing room availability. In

these settings, multi-unit pricing and selling strategies are essential. However, the limitations

of available datasets are even more pronounced in these industries, where competitors could

infer opponents’ strategies from dynamic pricing behavior. Given these empirical challenges,

experimental approaches offer a valuable alternative for studying these theoretical predictions.

In this paper, we test behavioral predictions in a setting where the seller holds multiple

units and faces the periodic arrival of trade opportunities, as in Carrasco and Smith (2017).

Specifically, we investigate how reservation prices evolve over time, adjust with changes in

the seller’s inventory, and respond to the presence of deadlines. Our goal is to advance the

emerging theoretical literature on multi-unit search models by experimentally evaluating their

main predictions in the laboratory, providing empirical evidence on the dynamics of multi-unit

pricing and seller optimal pricing behavior.

Experimental design We develop a controlled environment to examine how individuals

make dynamic selling decisions when managing multiple indivisible units of a homogeneous

good. Demand for the goods is experimentally controlled and stochastic. Participants act as
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sellers, determining reservation prices for each quantity that they might sell. Our experiment

was implemented online through Prolific, and our main analyses were pre-registered in the

American Economic Association’s RCT Registry (AEARCTR-0014339).

We adopt a mixed between- and within-subjects design to study the effects of changes in

demand and inventory, as well as the consequences of implementing hard deadlines. The within-

subject treatment varied the inventory level and demand distributions that subjects faced in

their search problems. The ordering of these sets of parameters were randomized at the subject

level. The between-subject treatment implemented a deadline: if subjects do not sell all of

their inventory by the (fixed and known) deadline, all the remaining inventory loses its value.

During each trading stage, participants set minimum acceptable prices (i.e., reservation

prices) up to either their maximum inventory or the maximum possible demand in the period,

whichever is lower. Prices and payments are denominated in terms of lottery tickets in order

to remove the potential for risk aversion to affect reservation prices.1 We simulate discounting

by imposing a termination chance after each period. The subjects’ search problem concludes

when all units are sold, the stochastic continuation process ends, or a deadline is reached.

Findings The main outcome variables of interest are the reservation prices that subjects

report for each decision problem. Specifically, we study: (i) the effect of inventory levels on

reservation prices, (ii) the effect of deadlines on reservation prices, and (iii) the determinants

of deviations between empirical and theoretical reservation prices.

Based on eight configurations with varying inventory levels and demand distributions pre-

sented in random orders to subjects, we do not find support for the main theoretically predicted

effects of changes in inventory and deadline. While higher inventory levels are expected to lower

reservation prices, the empirical effect is negligible and statistically insignificant, suggesting no

detectable impact in this setting. Deadlines also have no discernible effect on reservation prices,

contradicting the prediction that time pressure should lead sellers to lower their prices.

Finally, we find that deviations from theoretical predictions are positively associated with

inventory and unit number, while higher average demand reduces deviations. These results

1Previous work has accounted for risk aversion when comparing behavior to theory (see, for instance, Schunk
(2009), Schunk and Winter (2009), and Horváth (2023)). To the best of our knowledge, this paper is the first
to use payments denominated in probability in order to eliminate the effect of risk aversion (albeit under the
assumption of expected utility maximization).
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suggest that deviations mainly reflect systematic changes in theoretical predictions rather than

significant behavioral differences across treatments. Notably, we find that deviations grow

modestly over time, implying that experience does not lead to convergence toward theoretical

predictions and may instead be associated with fatigue or disengagement.

Related literature Most search models have focused on single-unit environments, forming

the basis of influential theories in labor (McCall, 1970), monetary (Kiyotaki and Wright, 1989,

1993; Trejos and Wright, 1995), and financial markets (Duffie et al., 2005). Only recently

has the theoretical literature begun to explore multi-unit settings. Carrasco and Smith (2017)

developed a general framework that extends core insights to multi-unit environments, followed

by Carrasco and Harrison (2023), who introduced costly search, and Carrasco et al. (2024), who

incorporated buyers with downward-sloping demand. In contrast to these theoretical advances,

the experimental literature on behavioral dynamics in search and pricing models, particularly

those involving varying inventory levels, remains underdeveloped.

Earlier experimental studies in labor market search tested McCall’s model and its variants,

primarily focusing on single-unit settings. Schotter and Braunstein (1981) and Braunstein and

Schotter (1982) found that reservation wages varied over time, which contradicted McCall’s

predictions. Additionally, Sonnemans (1998) observed that subjects tended to stop searching

too early, a behavior not fully explained by risk aversion. In contrast, Cox and Oaxaca (1989)

and Cox and Oaxaca (1992) found stronger alignment with theoretical expectations. Further-

more, Hey (1982) extended this framework to consumer search under unitary demands, offering

further insights into search dynamics.

Recent laboratory experiments have further explored factors influencing search behavior.

Carbone and Hey (2004) investigate excess sensitivity due to limited planning, Schunk (2009)

and Schunk and Winter (2009) highlight the role of loss aversion in early search termination,

and DellaVigna and Paserman (2005) examine the impact of impatience on suboptimal search

strategies. Caplin et al. (2011) explore satisficing behavior, while Brown et al. (2011) emphasize

the role of rising subjective search costs in declining reservation wages. Fehr and Wu (2023)

investigate costly dynamic search by buyers when sellers can obfuscate their products’ char-

acteristics. In turn, Karle et al. (2025) find that acceptance decisions in a sequential search
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task are influenced by irrelevant contextual information, highlighting the role of framing ef-

fects in search behavior. These studies, however, do not primarily focus on strategies involving

inventory and deadlines.

Meanwhile, the experimental literature on monetary search has largely focused on the role

of money in facilitating trade and enhancing market efficiency. Early studies, such as Duffy and

Ochs (1999), showed that money emerges endogenously as a solution to barter inefficiencies,

while later research (e.g., Duffy and Puzzello, 2014; Jiang et al., 2024) examined whether

money is necessary for efficient market outcomes compared to barter systems. In more complex

experiments, financial assets, such as over-the-counter (OTC) instruments, are introduced to

explore how liquidity can support Pareto-superior equilibria (e.g., Weill, 2020). In both cases,

transactions typically involve trading single units of fiat money or assets for a unit of a general

good. While this literature has explored key aspects of monetary systems, it remains less

extensive than that on job search, and does not address multi-unit transactions or dynamic

pricing behaviors, which are central to our research.

Few papers have directly examined how inventory levels influence reservation prices in ex-

perimental search settings. Cason et al. (2003) show that thicker markets—proxied by more

sellers or offers—affect price dispersion, providing indirect insight into how inventory may shape

reservation values. Schweitzer and Cachon (2000) find that decision-makers often deviate from

expected profit-maximizing quantities, suggesting that subjects behave as if their utility func-

tion includes a preference for minimizing ex-post inventory errors. Bolton and Katok (2008)

show that experience reduces biases but doesn’t eliminate them, while Lurie and Swaminathan

(2009) find that more frequent feedback improves performance but increases cognitive load.

We abstract cognitive considerations and instead focus on how the decentralization of the sell-

ing process, impatience, and the stochastic nature of buying offers affect seller behavior when

holding multiple units.

While deadlines (often referred to as the “search horizon”) are a standard feature in exper-

imental search designs, it is less common for studies to systematically vary the length of those

horizons across treatments. Cox and Oaxaca (1989) appear to be the first to experimentally

compare short- and long-horizon search problems. Baumann et al. (2023) examine how the

length of the horizon influences decision-making in optimal stopping tasks framed as airline
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ticket search. Marcu and Noussair (2024) study how horizon length interacts with a “price

freeze” option, which allows buyers to return to a previously observed offer. In our experiment,

we compare behavior under finite and infinite horizons, where the finite constraint is expected

to have a stronger effect when inventory is high relative to expected demand.

2 Theoretical predictions and hypothesis

In this section, we present the theoretical framework used to derive our main results, which

are the foundation of our experimental hypotheses. We outline the minimal environment able to

capture key features of multi-unit search models, including discounting, demand distributions,

inventory levels, and deadlines.

2.1 The environment

We consider a discrete time framework with a potential deadline 𝑇 , where each trading stage

is labeled as 𝑡 = 1, 2, 3, . . . , 𝑇 . In every stage 𝑡 < 𝑇 , there is a constant probability 𝛽 < 1 that

time will continue into the next stage. Naturally, at the deadline 𝑇 no further continuation is

possible, effectively terminating any decision-making process. At the beginning of each stage 𝑡,

a seller holds an inventory of goods 𝑛𝑡 ∈ {1, 2, 3, . . .} consisting of homogeneous and indivisible

items (e.g., flight tickets, hotel rooms) and has earnings of 𝑣𝑡 ∈ R+. Initial earnings are 𝑣1 = 0.2

Trade opportunities arise sequentially, and the seller receives only one offer per stage, re-

flecting the uncertainty inherent in any trading process. In each stage 𝑡, the seller is presented

with a random offer (𝑝𝑡 , 𝑞𝑡), where 𝑝𝑡 represents the per-unit price, and 𝑞𝑡 denotes the demand

size.3 Upon receiving an offer (𝑝𝑡 , 𝑞𝑡), the seller may choose to partially accept it by selling

any quantity 𝑦𝑡 ∈ {1, 2, . . . ,min(𝑛𝑡 , 𝑞𝑡)}. After selling 𝑦𝑡 units at price 𝑝𝑡 , the seller’s remaining

inventory becomes 𝑛𝑡+1 = 𝑛𝑡 − 𝑦𝑡 , and cumulative earnings update to 𝑣𝑡+1 = 𝑣𝑡 + 𝑝𝑡𝑦𝑡 .

Once a sale is made, the seller proceeds to the next stage without the option to revise

2In our experiment, both price offers and earnings are denominated in lottery tickets, where each ticket
represents a 1% chance of winning a $10 prize. This design ensures that expected utility maximizing choices
align with expected value maximization. This is consistent with our theoretical framework, which assumes
expected value maximizing behavior.

3We follow the standard probability convention in which uppercase letters (e.g., 𝑃,𝑄) denote random vari-
ables, and their lowercase counterparts (e.g., 𝑝, 𝑞) represent specific realizations.
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previous decisions. This irreversibility highlights the importance of strategic decision-making

at each stage. The trading process ends when the seller has no units left to sell or when

time reaches the deadline 𝑇 , introducing a natural constraint on trading opportunities and

emphasizing the interplay between time and decision-making.

Price offers and demand sizes are drawn independently each round. Price offers 𝑝𝑡 are drawn

from the discrete uniform distribution over integers between 1 and 𝑝. Demand sizes take discrete

values ℓ = 1, 2, 3, . . . , 𝑚 with associated probabilities 𝛼ℓ ≥ 0, satisfying 𝛼1 + 𝛼2 + . . . + 𝛼𝑚 = 1.

This structure introduces variability into the model, providing a framework to examine how

demand distributions shape seller’s decisions.

2.2 Reservation Prices

In general, let W𝑡 (𝑛) denote the value of holding 𝑛 units with 𝑡 periods remaining until the

deadline. This value function must satisfy the following recursive relation:

W𝑡 (𝑛) = 𝛽 E

(
max

𝑦∈{0,1,...,min(𝑛,𝑄𝑡 )}
[𝑃𝑡𝑦 +W𝑡+1(𝑛 − 𝑦)]

)
,

where 𝛽 is the discount factor, 𝑄𝑡 is the random demand, and 𝑃𝑡 is the price in period 𝑡. Clearly,

W0(𝑛) = 0. Furthermore, as we show in Proposition A.1 in the Appendix for the case without

a deadline, and in Proposition A.2 for the case with a deadline, the value W is strictly concave

in 𝑛, which means reservation prices are given by the value slope.

Without a deadline, the problem is stationary, and we refer to the value function in this

case as W(𝑛). Due to the concavity of value, the reservation price for selling 𝑖 units with an

inventory of 𝑛 in period 𝑡 is

R𝑖,𝑛,𝑡 = W𝑡 (𝑛 − 𝑖 + 1) −W𝑡 (𝑛 − 𝑖).

Our first hypothesis describes optimal reservation prices when demand is not restricted.

Hypothesis 1 (Reservation prices without demand restrictions) All reservation prices

without demand restrictions are equal.
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Figure 1: Values and Reservation Prices without Deadline. We assume that demands are
either 1 or 4, occurring with probabilities 𝛼1 = 0.9 and 𝛼4 = 0.1, respectively. The continuation
probability is 𝛽 = 0.8, and prices are discrete and uniformly distributed over the interval [1, 25].
The left panel displays the value function W(𝑛), and the right panel shows the corresponding
reservation prices, which vary with the seller’s inventory.

Hypothesis 1 follows from Corollary 1 in the Appendix. It shows that when the seller

has multiple units in inventory but faces no constraints on buyers’ demands, the problem

reduces mathematically to the classical single-unit search model. As a result, the optimal

reservation price coincides with that of the one-unit setting. This occurs because, without

demand restrictions, the intertemporal trade-offs inherent in inventory management vanish,

leading to pricing behavior identical to the simpler case. Corollary 2 in the Appendix further

extends this equivalence to environments with a deadline.

Hypothesis 2 (Sell-all price) The reservation price to sell all units is strictly positive and

equal to the single-unit reservation price.

This result is shown in the Appendix by Corollary 1 (without a deadline) and Corollaries 2

and 3 (with a deadline). These results demonstrate that even when the seller holds multiple

units, the optimal policy remains threshold-based: there exists a reservation price such that

the seller accepts any offer above it.

In the no-deadline case, the concavity of the value function implies that the marginal value

of inventory decreases with each additional unit sold, and the optimal reservation price is

characterized by the solution to equation (A.5). This threshold balances the trade-off between

selling immediately and waiting for future offers. With a deadline, the same logic applies, but
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the reservation price becomes time-dependent, declining as the deadline approaches due to the

diminishing option value of waiting.

Hypothesis 3 (Supply and Inventory) For a given unit, the seller’s reservation price de-

creases as the remaining inventory increases.

This result follows from the concavity of the value function with respect to inventory, which

implies a diminishing marginal value for each additional unit. As inventory increases, the

opportunity cost of selling one more unit decreases, making the seller more willing to accept

lower offers.

Hypothesis 4 (Reservation prices and deadlines) Reservation prices are lower when there

is a deadline.

Hypothesis 4 asserts that theoretically optimal reservation prices are lower when a deadline is

present. We show that this is numerically true for the parameters in our experiment in Appendix

Table A.1. To prove the result more generally would require showing that the marginal value

of inventory under a deadline, ΔW𝑇− 𝑗 (𝑛 − 𝑖 + 1), is strictly less than its counterpart in the

stationary (no-deadline) case, ΔW(𝑛 − 𝑖 + 1), for all 𝑇 − 𝑗 and 𝑛 − 𝑖.

The economic intuition is straightforward: a deadline shortens the horizon over which sell-

ers can wait for better offers, thereby reducing the option value of holding inventory. This

compresses continuation values and flattens the value function, leading us to expect a lower

marginal value of an additional unit. Formalizing this relationship across the full dynamic

program is complex, and we leave a complete theoretical treatment for future work.

3 Experimental design

We conduct an experiment to explore individuals’ selling behavior when they hold multiple

indivisible units of a good and encounter buyers stochastically, each offering to purchase a

limited number of units at a specified per-unit price. The experiment is designed to examine the

sellers’ dynamic decision-making when they face uncertainty about future trading opportunities.
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Participants were recruited through the online platform Prolific (www.prolific.com), and the

experiment was conducted entirely online.

Each subject in our experiment is assigned to one of two dynamic selling environments:

one with no deadline for selling inventory, or one in which a hard deadline of three stages

is imposed. In both treatments, subjects complete eight rounds. Each round consists of a

sequence of ‘trading stages,’ where each stage corresponds to an interaction with one potential

buyer. In each stage, subjects have the opportunity to exchange a subset of their inventory for

lottery tickets, which determine their probability of receiving a final monetary payment. Units

that are not traded yield no payoff. The only difference between the two treatments is that,

in the deadline condition, any units not traded within three stages are forfeited and cannot be

converted into lottery tickets.

Subjects begin the experiment by reading instructions that describe the structure of the

decision problems they will face. They are then shown a series of examples illustrating the

available information, the choices they must make, and the resulting payoffs in a single round.

After reviewing the instructions and examples, subjects proceed to the main phase of the

experiment. Screenshots of all instructions and examples are provided in Online Appendix C.

In each round, subjects are endowed with either 1, 2, or 4 units of the good, which we

refer to as the subject’s inventory.4 Subjects are also informed about the characteristics of

the stochastic demand structure they will face. Specifically, they are given information about

the probability distribution of each buyer’s maximum demand, as well as the distribution of

per-unit prices that buyers may offer. In all rounds, price offers are drawn from a discrete

uniform distribution over the integers 1 through 25. The subject’s initial inventory and the

distribution of buyers’ maximum demand together define a configuration of the problem. We

use eight distinct configurations (labeled A through H and summarized in Table 1), which are

presented to each subject in random order.

In each stage, a subject’s task is to specify reservation prices at which she is willing to sell

her inventory. A reservation price must be set for each feasible quantity, up to the minimum

of the subject’s inventory and the maximum possible demand. These reservation prices are

4To make the decision problem more natural for participants, it is framed as selling lobsters—a good that
(i) has high value, (ii) naturally spoils (providing a rationale for the stochastic termination described below),
and (iii) is likely to be familiar to most subjects.
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required to be weakly increasing in quantity, and must be between 1 and 25 (the minimum and

maximum possible price offers).5

After the subject submits her reservation prices, a quantity demanded and a price offer

are randomly drawn according to the parameters of the current configuration. The computer

then identifies the highest reservation price that is weakly less than the realized price offer.

The subject sells either the quantity demanded or the quantity associated with this reservation

price, whichever is smaller. Her earnings from the stage equal the product of the price offer

and the number of units sold.

Prices are denominated in lottery tickets, where each ticket represents a 1% chance of

receiving a bonus payment of $10. Many of the theoretical predictions discussed in Section 2

rely critically on the assumption of risk neutrality. Under expected utility theory, even risk-

averse subjects behave as if they are risk neutral in this context, since their choices influence

only the probability of receiving a fixed prize (Roth and Malouf, 1979).

Configuration Inventory
Demand Distribution
Structure 1 unit (𝛼1) 2 units (𝛼2) 3 units (𝛼3) 4 units (𝛼4)

A 1 1 100% 0 0 0
B 2 2 0 100% 0 0
C 2 3 90% 10% 0 0
D 2 1 100% 0 0 0
E 4 4 0 0 0 100%
F 4 5 90% 0 0 10%
G 4 2 0 100% 0 0
H 4 3 90% 10% 0 0

Table 1: Configurations of seller’s inventory level and the distribution of buyer’s maximum
demand.

5The monotonicity constraint is substantively meaningful, as it precludes the use of volume discounts, which
are sometimes observed empirically. Carrasco and Smith (2017) demonstrate that such pricing is not optimal
in theory. Absent this restriction, it would be necessary to define how the quantity traded is determined when
a price offer exceeds the reservation prices for both a smaller and a larger quantity. For example, if a subject
were to specify reservation prices of 5, 8, and 6 for 1, 2, and 3 units respectively, it would be ambiguous how
many units should be sold in response to a price offer of 7.
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Configurations and hypotheses The configurations are designed to serve as the basis for

testing our hypotheses. For instance, Configurations B and E allow us to determine whether the

reservation price remains constant when the seller holds multiple units and there are no demand

restrictions (Hypothesis 1). A, B, C, E, and F allow us to test whether the reservation price

to sell all units equals the single-unit reservation price (Hypothesis 2). To test whether higher

inventory levels lead to lower reservation prices (Hypothesis 3), we fix the demand structure and

vary the inventory level using configurations (A, D), (B, G), and (C, H) for demand structures 1,

2, and 3, respectively. Finally, all configurations serve as the basis for testing whether deadlines

decrease reservation prices (Hypothesis 4).

Rounds and trading stages Each round consists of different trading stages. At the begin-

ning of each trading stage, the subject needs to determine the minimum price per unit they are

willing to accept to sell any given number of units (i.e., a reservation price), up to the minimum

of the number of units they hold and the maximum demand that can appear. For instance, a

subject in Configuration F starts with an inventory of 4 units, and the buyer may demand up

to four units. Thus, such a subject would need to determine the minimum price per unit to

trade 1 unit, 2 units, and so on, up to 4 units. A subject in Configuration H starts with an

inventory of 4 units, but faces a maximum demand of 2 units. Thus, she only needs to choose

the minimum price per unit to sell 1 and 2 units. Figure 2 shows the interface subjects see

when facing Configuration H.
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Round 1, Stage 1

You currently have a stock of 4 lobsters and so far, you have 0 lottery tickets in this round.

There is a 20% chance that your lobsters will spoil after this stage.

In this round, there is a 90% chance that the number of lobsters demanded is 1 and 10% chance that it is 2. That means that

given your stock, the maximum you could sell is 2.

In the boxes below, please list the minimum number of lottery tickets per lobster you would be willing to accept to sell each

number of lobsters up to 2. Remember that the numbers you list must be between 1 and 25, and the minimum number of tickets

must increase with the number of lobsters.

Minimum price per unit to sell 1 unit

Minimum price per unit to sell 2 units

Next

Demand Chances

90.00 %90.00 %90.00 %

10.00 %10.00 %10.00 %

Demand of 1 Demand of 2

Instructions

In each round, you start with a stock of lobsters that have no value to you, but that you can sell for lottery tickets.

Each lottery ticket is worth a 1% chance of receiving the prize of $10.

Each round is broken up into trading stages:

You will start each stage stating the minimum price you would be willing to accept to sell your lobsters. You can

state different minimum prices for different numbers of lobsters.

In each trading stage, a buyer appears, offering to buy some of your lobsters in exchange for lottery tickets.

The number of lobsters they are willing to buy and the number of tickets they offer per lobster are drawn randomly

each round. The numbers that can be offered change from round to round, but prices are always between 1 and 25,

with each number equally likely to be chosen.

If the offered number of tickets per lobster is higher than one of the minimum prices you state, then you sell the

requested number of lobsters or the amount you were willing to sell, whichever is lower. In return, you earn the

offered number of lottery tickets for each lobster sold.

Figure 2: Reservation prices - No deadline

Feedback After choosing these reservation prices, subjects observe the realization of the

random price per-unit and the maximum number of units offered by the buyer. The subject is

informed of how their reservation prices have been used: given the realized price offer, they sell

the maximum of the amount demanded and what they are willing to sell.

After each trade, the subject is informed about the terms of the trade (i.e., how many units

were sold and at what price), the number of units remaining, if any, and the total probability

accumulated. Figure 3 shows the feedback outcome for a subject who did not sell any units,

whereas Figure 4 illustrates the case of a subject who sold all units in a given round.
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Results: Round 1, Stage 1

In this stage, the buyer offered 21 lottery tickets per lobster. On the previous page, you reported that the minimum you would

accept to sell one lobster is 25. Because the random price is below this, you have not agreed to sell any lobsters at this price.

This stage's random demand was 1. That means that you sold 0 lobsters and received 0 lottery tickets this stage.

You have accumulated a total of 0 lottery tickets through sales in this round.

Next

Debug info

Basic info

ID in group 1

Group 15991

Round number 1

Participant P1

Participant label

Session code 3ouiubrw

Figure 3: Stage results - No sales

Results: Round 2, Stage 1

In this stage, the buyer offered 22 lottery tickets per lobster. That is higher than the highest minimum acceptable price you

reported on the previous page, so you have agreed to sell up to 4 lobsters at this price.

This stage's random demand was 4. That means that you sold 4 lobsters and received 88 lottery tickets this stage.

You have accumulated a total of 88 lottery tickets through sales in this round.

Next

Debug info

Basic info

ID in group 1

Group 1502

Round number 2

Participant P1

Participant label

Session code wrkwfjpm

Figure 4: Stage results - Sales

Termination If the subject does not sell all the units she holds in the current trading stage,

there is an 80% chance that the subject continues onto the next stage; otherwise, the decision

process ends. The subject is informed about the result of the continuation process after each

stage. When the decision process ends, either because the subject depleted her whole inventory

or because the decision process was terminated stochastically, the subject is informed about

the total probability accumulated. Figure 5 illustrates a case in which the computer terminates

the process as a result of an unfavorable draw.

Continuation: Round 4, Stage 1

The computer randomly rolled a 96, which is higher than 80. That means that this round is over.

Next

Debug info

Basic info

ID in group 1

Group 1506

Round number 6

Participant P1

Participant label

Session code wrkwfjpm

Figure 5: Continuation - Random termination

In the decision process with deadlines, the process can also terminate if the subject reaches
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the deadline without selling all of her inventory. Figure 6 shows the feedback presented to

subjects when the deadline is reached and all unsold units are dissipated.

Continuation: Round 3, Stage 3

All of your lobsters were guaranteed to spoil after the last stage, so this round is over. You accumulated a total of 0 lottery tickets

in this round, so if this round is chosen to be the one that counts, you have a 0% of receiving a bonus payment of $10.

Next

Debug info

Basic info

ID in group 1

Group 1505

Round number 5

Participant P1

Participant label

Session code wrkwfjpm

Figure 6: Continuation - Deadline reached

Payoffs At the end of the experiment, one configuration is randomly chosen to determine the

payoffs. Each configuration has an equal chance of being selected. Subjects are notified of the

chosen decision type after all decisions have been completed.

Data The experiment was carried out over a three day period in September 2024. 201 subjects

completed the experiment - 101 in the treatment without deadlines and 100 with deadlines. All

subjects received the baseline payment for completion of $3.60, and 65 subjects received the

bonus payment of $10. The median time for completion was under 18 minutes.

4 Results

As discussed in our preanalysis plan, our empirical analysis focuses on data from the first

stage of trade.6 This is because the set of subjects contributing data from later stages is en-

dogenous: those who report higher reservation prices in the first stage are more likely to provide

data in subsequent stages, raising concerns about selection bias. Each subject contributes 18

reservation price observations, corresponding to the total number of reservation prices that

must be set for the maximum number of units allowed by each configuration.

In the four sections below, we compare empirical reservation prices to their theoretical pre-

dictions. First, we graphically compare the empirical and theoretical supply curves to identify

patterns that allow us to test the first four hypotheses. Second, we examine the effect of

6The regressions reported in Tables 2, 3, and 4 match our preanalysis plan exactly. No analysis from the
preanalysis plan was omitted in the paper. All other statistical analysis should be viewed as exploratory.
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increasing inventory while holding demand constant. Third, we analyze the impact of intro-

ducing a deadline while keeping both inventory and demand fixed. Finally, we evaluate the

characteristics of decision problems that lead to deviations from theoretical predictions.

Because the magnitude of the predicted effect of inventory varies across demand structures,

and the magnitude of the predicted effect of deadlines varies across both demand structures

and inventory levels, we pool the analysis by focusing on a single summary variable, which we

refer to as PE (for “predicted effect”). These predicted effects reflect the theoretical impact of

our treatment variables—inventory levels and the presence of a deadline—on reservation prices.

For example, suppose that for a fixed unit demand, the reservation price to sell the unit is 13

when the seller holds one unit of inventory, and 9 when holding two units. In this case, we

define the variable PE Inv as −4. If subjects’ responses to increased inventory and deadlines

align with theoretical predictions on average, the estimated coefficients on PE Inv and PE DL

should be equal to one. Coefficients less than one indicate an under-reaction to the treatment,

while coefficients greater than one indicate an over-reaction.

4.1 The effect of demand restrictions and supply curves

In this section, we compare the theoretical supply curves implied by the reservation values

with their empirical counterparts. The analysis distinguishes between environments with and

without deadlines to examine how time constraints influence sellers’ willingness to sell. For clar-

ity, we present the latter case in the Appendix, as the patterns remain qualitatively unchanged

relative to our hypotheses.

Figure 7 presents results for configurations A, B, C, and D. In all cases except configuration

A—where sellers hold a single unit—sellers are endowed with two units, while the demand

distribution varies across configurations. Demand structures 1, 2, and 3 are considered. Across

most configurations—except for D—the empirical supply curves lie below their theoretical coun-

terparts, indicating that sellers tend to accept lower prices than predicted. Notably, the gap

between empirical and theoretical curves narrows as the variance of the demand distribution

increases, as observed in configuration C. Furthermore, the empirical reservation price for the

second unit more closely aligns with the theoretical prediction than that of the first unit, sug-

gesting greater adherence to theory when selling subsequent units.
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In turn, Figure 8 displays the theoretical and empirical supply curves for configurations

E, F, G, and H under the no-deadline condition. In all configurations, the inventory level is

fixed at four units, while the demand distribution varies across settings. Here, we consider

demand structures 2, 3, 4, and 5. The empirical supply curve lies above the theoretical one

for configurations with non-zero variance (F and H). In contrast, for configurations E and G,

the empirical supply curve crosses the theoretical curve from below. Unlike the case where

the inventory is fixed at two units, the empirical reservation price aligns more closely with the

theoretical prediction for the first unit than for subsequent units.

Configuration A corresponds to the classic search problem with a single unit. Thus, behavior

in this search problem serves as a baseline point of comparison between our experiment and

the existing literature.

Result 1 When the seller holds a single unit and buyers have unitary demand, empirical reser-

vation values are unequivocally lower than the theoretically predicted value.

Our findings therefore reinforce those of Sonnemans (1998) within our experimental frame-

work—particularly given that, under expected utility maximization, subjects should behave as

if they are risk neutral.

To test Hypothesis 1, we use configurations B and E. In configuration B, the seller holds two

units and encounters buyers who demand exactly two units, while in configuration E, the seller

holds four units and encounters buyers who demand exactly four units. In both configurations,

we reject the hypothesis of constant reservation values.7

Result 2 When sellers hold more than one unit and face buyers with unrestricted demands,

reservation values are increasing, not constant. Thus, we reject Hypothesis 1.

Configurations A, B, C, E, and F are used to test Hypothesis 2. For this purpose, we focus

on the reservation price set by the seller at the highest inventory level in each configuration.

7While the evidence clearly rejects the hypothesis of constant reservation values, it is reasonable to object
that our design requires reservation prices to be weakly increasing. Thus, any noise in decision-making leads to a
rejection of the hypothesis. As an additional point of comparison, we estimate the slope of the supply functions
for Configurations B, C, E, and F using Subject × Configuration fixed effects. We can then test whether supply
functions are flatter when demands are unrestricted (Configurations B and E). We find that in both cases, the
estimated slopes are higher for the configurations with unrestricted demand, confirming Result 2. These results
are available upon request.
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(a) Configuration A with no deadline. Inven-
tory level: one unit. Demand distribution:
𝛼1 = 1.
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(b) Configuration B with no deadline. Inven-
tory level: two units. Demand distribution:
𝛼2 = 1.
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(c) Case C with no deadline. Inventory level:
two units. Demand distribution: 𝛼1 = 0.19
and 𝛼2 = 0..
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(d) Configuration D with no deadline. Inven-
tory level: two units. Demand distribution:
𝛼1 = 1.

Figure 7: Comparison of Configurations A, B, C, and D with no deadline. The empirical supply
curves reflect average reservation prices for each unit in the first round of the search process.
Error bars indicate 95% confidence intervals, computed using clustered standard errors from a
regression of reservation prices on unit dummies.
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(a) Configuration E with no deadline. Inven-
tory level: four units. Demand distribution:
𝛼4 = 1.
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(b) Configuration F with no deadline. Inven-
tory level: Demand distribution: 𝛼1 = 0.9 and
𝛼4 = 0.1.
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(c) Configuration G with no deadline. Inven-
tory level: four units. Demand distribution:
𝛼2 = 1.
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(d) Configuration H with no deadline. Inven-
tory level: four units Demand distribution:
𝛼1 = 0.9 and 𝛼2 = 0.1.

Figure 8: Comparison of Configurations E, F, G, and H with no deadline. The empirical supply
curves reflect average reservation prices for each unit in the first round of the search process.
Error bars indicate 95% confidence intervals, computed using clustered standard errors from a
regression of reservation prices on unit dummies.
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These values are 10.22, 13.09, 12.77, 15.67, and 17.18, respectively. To assess the statistical

significance of these differences, we regress reservation prices on configuration dummies and

test whether the coefficients on the dummies are jointly equal to zero. This null hypothesis is

rejected (𝑝 < 0.01; full results available upon request).

Result 3 The reservation price to sell all units depends on the inventory level and is generally

different from the reservation price in the single-unit case. Thus, we reject Hypothesis 2.

Figures B.1 and B.2 in the Appendix B replicate Figures 7 and 8, respectively, for the case

with a deadline. Most of the qualitative results remains the same in this case. The empirical

and theoretical supply curves for Configuration C are nearly identical, though we believe this

is likely due to random variation rather than any special feature of the configuration. The em-

pirical supply curves for Configurations F-H are uniformly above their theoretical counterparts,

indicating, as discussed further below, that subjects react less strongly to deadlines than theory

would predict.

4.2 The effect of increasing inventory

We now consider how changes in inventory levels influence reservation prices. To test Hy-

pothesis 3, we estimate the fixed-effects model presented in Equation 1:

Res. Price𝑖𝑐𝑢 = 𝛽0 + 𝛽1High Inv𝑐 × PE Inv𝑐𝑢 +
3∑︁

𝑑=1

𝛿𝑑𝟙{Demand𝑐 = 𝑑} + 𝛼𝑖 + 𝜀𝑖𝑐𝑢. (1)

The indices are defined as follows: 𝑖 denotes the subject, 𝑐 the configuration, and 𝑢 the unit

number. The dependent variable, Res. Price𝑖𝑐𝑢, represents the reservation price reported by

subject 𝑖 for unit 𝑢 under configuration 𝑐. The variable High Inv𝑐 equals 1 for configurations

D, G, and H. The demand dummies 𝟙{Demand𝑐 = 𝑑} indicate which of the three demand

distributions is used in configuration 𝑐. The variable PE Inv𝑐𝑢 is explained at the beginning of

this section. The parameter of interest is 𝛽1, and we estimate Equation 1 separately for the

deadline and no-deadline treatments.8

8For this regression, we will use only data from Configurations A, B, C, D, G, and H because these are
the configurations with variation in inventory for fixed demand structures. Thus, each subject contributes 10
observations to this regression.
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(1) (2) (3) (4)

Res. Price Res. Price Res. Price Res. Price

Higher Inventory -0.28 0.014

(0.28) (0.23)

Higher Inventory × Predicted Effect 0.067 -0.014

(0.068) (0.035)

Constant 10.4∗∗∗ 10.4∗∗∗ 9.78∗∗∗ 9.76∗∗∗

(0.32) (0.32) (0.33) (0.32)

Type No Deadline No Deadline Deadline Deadline

Observations 1010 1010 1000 1000

Notes: Linear regression with subject and demand structure fixed effects and standard errors clustered at the

subject level. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Table 2: Effect of inventory levels on reservation prices

Table 2 summarizes the effects of increased inventory levels while holding the demand struc-

ture constant. Columns (1) and (3) report the results of regressing reservation prices on a

dummy indicating higher inventories without accounting for how the theoretical predictions

vary based on configuration. Columns (2) and (4) interact the dummy for higher inventory

with the theoretically predicted effect of the higher inventory. The coefficient on the interac-

tion term can be interpreted as the ratio of the empirical effect to the theoretically predicted

effect.

Across all specifications, we find no statistically significant effect of increased inventory.

In the no-deadline treatment, the estimated effect has the predicted sign, but the 95% confi-

dence interval rules out effects greater than 20% of the theoretically predicted magnitude. In

the deadline treatment, the sign of the effect is contrary to theoretical predictions: increased

inventory slightly raises reservation prices, although the effect is statistically insignificant.

Result 4 Inventory levels do not have a statistically significant effect on how sellers set reser-

vation prices. Thus, we reject Hypothesis 3.
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4.3 The effect of deadlines

We next examine how the introduction of deadlines affects reservation prices, providing a

direct test of Hypothesis 4. If subjects anticipate the possibility of being unable to continue

the selling process, they may become more eager to sell, leading them to set lower reservation

prices. To test this, we estimate the following random-effects model:

Res. Price𝑖𝑐𝑢 = 𝛽0 + 𝛽1DL𝑖 × PE DL𝑐𝑢 +
18∑︁
𝑘=1

𝛾𝑘𝟙{Configuration-Unit𝑐𝑢 = 𝑘} + 𝛼𝑖 + 𝜀𝑖𝑐𝑢. (2)

Variable definitions follow the same notation as above. DL𝑖 equals one if subject 𝑖 is as-

signed to the deadline treatment. The term PE DL𝑐𝑢 is defined earlier in the section. The

configuration-unit dummies 𝟙{Configuration-Unit𝑐𝑢 = 𝑘} control flexibly for each unit within

each configuration. Standard errors are clustered at the subject level. This regression includes

all configurations; each subject contributes 18 observations, one for each reservation price de-

cision across all configuration-unit combinations. The coefficient of interest is 𝛽1.

(1) (2)

Res. Price Res. Price

Deadline -0.37

(0.53)

Deadline × Predicted Effect 0.022

(0.077)

Constant 10.2∗∗∗ 10.0∗∗∗

(0.51) (0.41)

Demand and Inventory FE Yes Yes

Observations 3618 3618

Notes: Linear regression with subject random effects,

configuration-unit fixed effects, and standard errors clustered at

the subject level. Significance indicated by: *** p<0.01, **

p<0.05, * p<0.1.

Table 3: The effect of deadlines on reservation prices
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Table 3 reports the results of estimating Equation 2. Because this is a between-subject com-

parison, each subject contributes 18 reservation price observations—one for each configuration-

unit pair. In contrast to the within-subject analysis of inventory effects, the deadline effect

reflects between-subject differences across treatment groups.

Column (1) shows a regression using a dummy for deadline assignment. Theory predicts

a negative coefficient, as deadlines should induce lower reservation prices due to the risk of

forfeiting unsold units. However, the estimated effect is near zero and statistically insignifi-

cant. Column (2) includes the interaction with the theoretically predicted effect. The estimate

suggests that the empirical effect of deadlines is only 2% of the predicted magnitude.

We summarize our findings in the following result.

Result 5 Deadlines do not have a statistically significant effect on how sellers set reservation

values. Thus, we reject Hypothesis 4.

4.4 The determinants of deviations from theory

Finally, we investigate which characteristics of the search problem drive deviations from

theoretical predictions. For this analysis, we estimate the following fixed-effects model:

Deviation𝑖𝑐𝑢 = 𝛽0 +X′
𝑖𝑐𝑢𝛽 + 𝛼𝑖 + 𝜀𝑖𝑐𝑢, (3)

The dependent variable, Deviation𝑖𝑐𝑢, measures the difference between the observed and the

theoretically predicted reservation price. We estimate the model using both the raw difference

and the absolute deviation as dependent variables. The matrix X𝑖𝑐𝑢 includes current inventory,

unit number, average demand level, and search number (a proxy for experience). The unit

number refers to the position in the sequence of sales within a configuration; for instance,

under configuration H, the seller has an inventory of 4 and faces buyers who may demand up

to two units each. This seller must set separate reservation prices for the first and second unit

sold—these correspond to unit numbers 1 and 2. The average demand level is the expected

number of units a buyer demands, calculated as the probability-weighted average across the

demand distribution (e.g., under demand structure 5, average demand is 0.9×1+0.1×4 = 1.3).

The coefficients 𝜷 capture the impact of these characteristics on deviations.
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This regression includes data from all configurations, resulting in each subject contributing

18 observations. By pooling these observations across subjects, we aim to identify systematic

patterns that explain deviations from theoretical benchmarks.

(1) (2) (3) (4)

Deviation Deviation Abs(Deviation) Abs(Deviation)

Inventory 2.02∗∗∗ 2.02∗∗∗ 0.38∗∗∗ 0.38∗∗∗

(0.094) (0.094) (0.11) (0.11)

Unit Number 1.57∗∗∗ 1.57∗∗∗ 0.45∗∗∗ 0.44∗∗∗

(0.13) (0.13) (0.088) (0.087)

Average Demand -2.67∗∗∗ -2.66∗∗∗ -0.17∗ -0.16

(0.099) (0.10) (0.099) (0.099)

Search Number 0.031 0.098∗∗∗

(0.051) (0.036)

Constant -3.04∗∗∗ -3.18∗∗∗ 3.60∗∗∗ 3.14∗∗∗

(0.36) (0.42) (0.26) (0.32)

Observations 3618 3618 3618 3618

Notes: Linear regression with subject fixed effects and standard errors clustered at the subject

level. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Table 4: Deviations from theoretical results

Table 4 reports the relationship between structural features of the problem and deviations

from theoretically optimal reservation prices. Columns (1) and (2) use the raw deviation as the

dependent variable, while Columns (3) and (4) use the absolute deviation.

Columns (1) and (2) show that raw deviations are positively associated with inventory

and unit number and negatively associated with average demand. It is straightforward to see

these effects from Figures 7 and 8. Subjects make minimal changes to their reservation prices

in response to higher inventory or demand. Because higher levels of inventory (demand) are

theoretically predicted to decrease (increase) reservation prices, the empirical deviation variable

increases (decreases). In the case of unit number, Figures 7 and 8 show that subjects tend to
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produce steeper supply functions than theory would predict, leading to a positive correlation

between deviation and unit number.

Columns (3) and (4) focus on absolute deviations and provide further insight into the mag-

nitude of departures from theory. Inventory and unit number remain positively associated with

deviation size. Notably, the positive coefficient on search number (0.098 in Column 4) suggests

that deviations increase modestly with the search number—contrary to expectations of better

decision-making with experience. This may reflect cognitive fatigue or declining engagement as

subjects progress through repeated decision tasks.

5 Concluding Remarks

This paper provides empirical evidence from laboratory experiments that test predictions

about dynamic seller pricing in multi-unit search models. We test the theoretical work of

Carrasco and Smith (2017) by examining how reservation prices evolve in a decentralized,

multi-unit setting with stochastic buyer arrivals, focusing on inventory levels and deadlines.

Contrary to theoretical predictions, we find that neither inventory nor deadlines significantly

affect pricing behavior, suggesting that theoretical models should be enriched.

Our results highlight a gap in the empirical study of multi-unit search environments. The

lack of real-world data makes it difficult to test theoretical models, and our findings point to the

need for further research into how sellers set prices in the presence of inventory and deadlines,

especially in industries like online retail, airlines, and hotels. Behavioral explanations may also

be at play, requiring further exploration and suggesting that real-world pricing strategies are

more complex than existing models suggest.
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Appendix

A Derivation of Theoretical Results

A.1 Values and reservation prices with no deadlines

When there are no deadlines, the environment is stationary, and we can drop the stage

sub-index 𝑡. Price offers and earnings are denominated in lottery tickets, where each ticket

represents a 1% chance of winning a 𝑢 prize and 𝑢 otherwise. The probability of receiving the

utility payoff of 𝑢 is 𝜋.

Let 𝑛 be the post-trade inventory so that the continuation value function obeys

V(𝑛, 𝜋) = 𝛽E

(
max

𝑦∈[0,min(𝑛,𝑄)]
V(𝑛 − 𝑦, 𝜋 + 𝑃𝑦)

)
+ (1 − 𝛽)E(𝜋). (A.2)

where E(𝜋) = 𝑢 + 𝜋(𝑢 − 𝑢). As we now formally show in our next result, the seller maximizes

optionality and, consequently, the expected utility of the lottery. More precisely, the seller

maximizes the probability of receiving the utility payoff of 𝑢.

Proposition A.1 (Values without deadline) When 𝑇 → ∞ thenV(𝑛, 𝜋) = 𝑢+(𝜋+W(𝑛)) (𝑢−

𝑢), where W(𝑛) solves

W(𝑛) = 𝛽E

(
max

𝑦∈[0,min(𝑛,𝑄)]
(𝑃𝑦 +W(𝑛 − 𝑦))

)
. (A.3)

Furthermore, the reservation price for selling 1 ≤ 𝑖 ≤ 𝑛 units equals

R𝑖,𝑛 = ΔW(𝑛 − 𝑖 + 1) = W(𝑛 − 𝑖 + 1) −W(𝑛 − 𝑖). (A.4)

which fall as inventory increase.
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Proof of Proposition A.1

We will prove the result by a guess-and-verify procedure for general utility payoffs 𝑢 > 𝑢 of the

lottery, as well as probability 𝜋. Substituting V(𝑛, 𝜋) = 𝑢 + (𝜋 +W(𝑛)) (𝑢−𝑢) into (A.2) yields:

𝑢 + (𝜋 +W(𝑛)) (𝑢 − 𝑢) = 𝛽(𝑢 − 𝑢)E
(

max
𝑦∈[0,min(𝑛,𝑄)]

(𝑃𝑦 +W(𝑛 − 𝑦))
)
+ 𝑢 + 𝜋(𝑢 − 𝑢)

Canceling common terms yields W that satisfies (A.3). Since there is a unique fixed point

for W, it follows that W is a concave function, by Carrasco and Smith (2017). Consequently,

the slopes ΔW(𝑛 − 𝑖 + 1) = W(𝑛 − 𝑖 + 1) −W(𝑛 − 𝑖) represent the reservation prices for selling

𝑖 units. As W is concave, reservation prices fall as inventory increase.

Corollary 1 (Single unit case and no demand restrictions) When 𝑛 = 1 or in the case

without demand restrictions, the reservation prices are all equal to R, that solves

R = 𝛽E (max {𝑃,R}) (A.5)

while the continuation value function is V = (𝑢 − 𝑢) (𝜋 + R).

Proof of Corollary 1

If 𝑛 = 1 or in the case without demand restrictions thenW = 𝛽E (max {𝑃,W}) and thus R = W

solves (A.5). Then V = (𝑢 − 𝑢) (𝜋 +W) = (𝑢 − 𝑢) (𝜋 + R).

A.2 Values and reservation prices with deadlines

We now assume that 𝑇 < ∞ and so we need to keep track of the stage time 𝑡 to compute

continuation values. However, we do not need to use it for state variables. As in our previous

case without deadline, let 𝑛 be the post-trade inventory. Then, since we have assumed that

𝑝𝑛 < 1, we obtain that for any 𝑗 ∈ {1, 2, . . . , 𝑇 − 1}:

V𝑇− 𝑗 (𝑛, 𝜋) = 𝛽E

(
max

𝑦∈[0,min(𝑛,𝑄)]
V𝑇− 𝑗+1(𝑛 − 𝑦, 𝜋 + 𝑃𝑦)

)
+ (1 − 𝛽)E(𝜋). (A.6)
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Naturally, at the final stage 𝑡 = 𝑇 the continuation value is just the expected value of the

lottery; thus, V𝑇 (𝑛, 𝜋) = E(𝜋) = 𝑢 + 𝜋(𝑢 − 𝑢).

The following result is the exact analog to our Proposition A.1 for the case with a deadline

𝑇 . The seller maximizes optionality and thus the probability of the high reward of 𝑢. To wit,

the value of holding inventory is the expected value of the lottery, as we specify in (A.7).

Proposition A.2 (Values with deadline) For 𝑗 ∈ {1, 2, 3, ..., 𝑇 − 1} we have

V𝑇− 𝑗 (𝑛, 𝜋) = E(𝜋) + (𝑢 − 𝑢)W𝑇− 𝑗 (𝑛), (A.7)

where

W𝑇− 𝑗 (𝑛) = 𝛽E

(
max

𝑦∈[0,min(𝑛,𝑄)]
(𝑃𝑦 +W𝑇− 𝑗+1(𝑛 − 𝑦))

)
and W𝑇 (𝑛) = 0 (A.8)

Furthermore, the reservation price for selling 1 ≤ 𝑖 ≤ 𝑛 units at 𝑡 = 𝑇 − 𝑗 equals

R𝑖,𝑛, 𝑗 = ΔW𝑇− 𝑗 (𝑛 − 𝑖 + 1) = W𝑇− 𝑗 (𝑛 − 𝑖 + 1) −W𝑇− 𝑗 (𝑛 − 𝑖) (A.9)

which fall as inventory increases.

Proof of Proposition A.2

We proceed by induction for general utility payoffs 𝑢 > 𝑢 of the lottery, as well as probability

𝜋. At 𝑡 = 𝑇 continuation value is V𝑇 (𝑛, 𝜋) = E(𝜋). Then, when 𝑗 = 1 value in (A.6) is

V𝑇−1(𝑛, 𝜋) = 𝛽E

(
max

𝑦∈[0,min(𝑛,𝑄)]
E(𝜋 + 𝑃𝑦)

)
+ (1 − 𝛽)E(𝜋).

Since E(𝜋 + 𝑝𝑦) = E(𝜋) + 𝑝𝑦(𝑢 − 𝑢) we obtain

V𝑇−1(𝑛, 𝜋) = 𝛽E

(
max

𝑦∈[0,min(𝑛,𝑄)]
(E(𝜋) + 𝑃𝑦(𝑢 − 𝑢))

)
+ (1 − 𝛽)E(𝜋).
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As in the last stage, 𝑡 = 𝑇 , it is optimal to sell all remaining units, we deduce that

V𝑇−1(𝑛, 𝜋) = E(𝜋) + (𝑢 − 𝑢)𝛽E(𝑃)E(min(𝑛, 𝑄)).

Next, we let W𝑇−1(𝑛) ≡ 𝛽E(𝑃)E(min(𝑛, 𝑄)) and thus

V𝑇−1(𝑛, 𝜋) = E(𝜋) + (𝑢 − 𝑢)W𝑇−1(𝑛)

Next, when 𝑗 = 2 we obtain that (A.6) is

𝑉𝑇−2(𝑛, 𝜋) = 𝛽E

(
max

𝑦∈[0,min(𝑛,𝑄)]
𝑉𝑇−1(𝑛 − 𝑦, 𝜋 + 𝑃𝑦)

)
+ (1 − 𝛽)E(𝜋).

Plugging V𝑇−1(𝑛, 𝜋) and using E(𝜋 + 𝑝𝑦) = E(𝜋) + 𝑝𝑦(𝑢 − 𝑢) we deduce

V𝑇−2(𝑛, 𝜋) = 𝛽E

(
max

𝑦∈[0,min(𝑛,𝑄)]
(E(𝜋 + 𝑃𝑦) + (𝑢 − 𝑢)W𝑇−1(𝑛 − 𝑦))

)
+ (1 − 𝛽)E(𝜋)

V𝑇−2(𝑛, 𝜋) = E(𝜋) + (𝑢 − 𝑢)𝛽E
(

max
𝑦∈[0,min(𝑛,𝑄)]

(𝑃𝑦 +W𝑇−1(𝑛 − 𝑦))
)
.

We define the last term as in (A.8) and obtain

𝑉𝑇−2(𝑛, 𝜋) = E(𝜋) + (𝑢 − 𝑢)W𝑇−2(𝑛).

Finally, for any 𝑗 ∈ {3, 4, . . . , 𝑇−1} we use induction. IfW𝑇− 𝑗+1(𝑛, 𝜋) obeys (A.7) andW𝑇− 𝑗+1(𝑛)

obeys (A.8) then

V𝑇− 𝑗 (𝜋, 𝑛) = E(𝜋) + (𝑢 − 𝑢)𝛽E
(

max
𝑦∈[0,min(𝑛,𝑄)]

(𝑃𝑦 +W𝑇− 𝑗+1(𝑛 − 𝑦))
)
= E(𝜋) + (𝑢 − 𝑢)W𝑇− 𝑗 (𝑛).

Next, to show that reservation values obey A.9 and that they fall as inventory increases, we

first show that 𝑊𝑇− 𝑗 (𝑛) is a concave function of 𝑛 for any 𝑗 ∈ {1, 2, . . . , 𝑇 − 1}. We proceed by

induction, using (A.8). For 𝑗 = 1, since 𝑊𝑇 (𝑛) = 0 we obtain

W𝑇−1(𝑛) = 𝛽E

(
max

𝑦∈[0,min(𝑛,𝑄)]
𝑃𝑦

)
= 𝛽E (𝑃min(𝑛, 𝑄))
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This means that W𝑇−1(𝑛) is a concave function of 𝑛. For min(𝑛, 𝑞) is a concave function, and

so is its expectation. A direct implication of concavity is that reservation prices are value-first

differences. That is, the reservation price for selling 𝑖 units at 𝑡 = 𝑇 − 1 is

R𝑖,𝑛,1 = ΔW𝑇−1(𝑛 − 𝑖 + 1) = W𝑇−1(𝑛 − 𝑖 + 1) −W𝑇−1(𝑛 − 𝑖)

Next, when 𝑗 = 2 we obtain

W𝑇−2(𝑛) = 𝛽E

(
max

𝑦∈[0,min(𝑛,𝑄)]
(𝑃𝑦 +W𝑇−1(𝑛 − 𝑦))

)
As in the proof of Theorem 1 in Carrasco and Smith (2017), we now rewrite the right-hand side

maximization as a minimization problem where the choice variable is the post trade inventory

level 𝑧 = 𝑛 − 𝑦. That is,

W𝑇−2(𝑛) = 𝛽E

(
max

𝑛−min(𝑛,𝑄)≤𝑧≤𝑛
(𝑃(𝑛 − 𝑧) +W𝑇−1(𝑧))

)
= 𝛽E(𝑃)𝑛 − E

(
min

max(𝑛−𝑄,0)≤𝑧≤𝑛
(𝑃𝑧 −W𝑇−1(𝑧))

)
Finally, we eliminate the constraint by using the characteristic function 𝜒𝐶 (𝑞) (𝑧, 𝑛) = 0 if

(𝑧, 𝑛) ∈ 𝐶 (𝑞) and +∞ otherwise, where 𝐶 (𝑞) = ∪𝑛{(𝑧, 𝑛) |max(𝑛 − 𝑞, 0) ≤ 𝑧 ≤ 𝑛}. Then:

W𝑇−2(𝑛) = 𝛽E(𝑃)𝑛 − E
(
min
𝑧≥0

(𝑃𝑧 −W𝑇−1(𝑧) + 𝜒𝐶 (𝑄) (𝑧, 𝑛))
)

The first term 𝛽E(𝑃)𝑛 is linear in 𝑛 and so the concavity of the second term suffices for

the concavity of W𝑇−2(𝑛). As 𝐶 (𝑥) is convex, then 𝜒𝐶 (𝑥𝑞 (𝑧, 𝑛) is convex in (𝑧, 𝑛). Further-

more, −W𝑇−1(𝑧) is convex in 𝑧 and so 𝑃𝑧 −W𝑇−1(𝑧) + 𝜒𝐶 (𝑞) (𝑧, 𝑛) is convex in (𝑧, 𝑛). That is,

according to Theorem 5.3 of Rockafellar (1970), min𝑧≥0(𝑃𝑧−W𝑇−1(𝑧) + 𝜒𝐶 (𝑞) (𝑧, 𝑛)) is convex in

𝑛. The expectation preserves convexity and so 𝑊𝑇−2(𝑛) is concave in 𝑛. Using exactly the same

inductive logic, it follows that 𝑊𝑇− 𝑗 (𝑛) is concave for the remaining values 𝑗 ∈ {3, 4, . . . , 𝑇 − 1}.

Furthermore, the concave value means that the reservation price for selling 1 ≤ 𝑖 ≤ 𝑛 units at

𝑡 = 𝑇 − 𝑗 obeys A.9 and that they fall as inventory increases.
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Corollary 2 (Single unit case and no demand restrictions) When 𝑛 = 1, the continu-

ation value function for 𝑗 ∈ {1, 2, 3, ..., 𝑇 − 1} solves

V𝑇− 𝑗 = (𝑢 − 𝑢)𝜙𝑇− 𝑗 , (A.10)

where

𝜙𝑇− 𝑗 = 𝛽E
(
max(𝑃, 𝜙𝑇− 𝑗+1)

)
and 𝜙𝑇 = 0. (A.11)

Proof of Corollary 2

When 𝑛 = 1 then (A.8) becomes (A.11) and (A.7) becomes (A.10) which completes the

proof.

Corollary 3 (Sell-all price) At period 𝑡 = 𝑇 − 𝑗 the sell-all reservation price is R𝑛,𝑛, 𝑗 =

W𝑇− 𝑗 (1) for all 𝑗 ∈ {1, 2, . . . , 𝑇 − 1} and obeys

R𝑛,𝑛, 𝑗 = 𝛽E
(
max(𝑃,R𝑛,𝑛, 𝑗−1)

)
and R𝑛,𝑛,0 = 0 (A.12)

Hence, it is invariant to inventory adjustments.

Proof: This follows immediately from A.9. The sell-all price is the price at which the seller is

willing to sell all 𝑛 units of inventory that he has; hence, R𝑛,𝑛, 𝑗 = W𝑇− 𝑗 (1). Exploiting A.8, we

deduce that reservation prices obey A.12 and that they are invariant to inventory adjustments.

Corollary 4 (Reservation price without demand restrictions) When the seller faces

no demand restrictions (i.e., 𝑛 ≤ 𝑞 for all values of 𝑞) then the seller uses a constant reservation

price R 𝑗 for each 𝑗 ∈ {1, 2, . . . , 𝑇 − 1} to either sell all or nothing. In this case, reservation

prices obey A.12.

Proof: We exploit A.8 and impose no demand restrictions, to get that values obey

W𝑇− 𝑗 (𝑛) = 𝛽E
(
max(𝑃𝑛,W𝑇− 𝑗+1(𝑛))

)
and W𝑇 (𝑛) = 0
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We divide on both sides by 𝑛 and get

W𝑇− 𝑗 (𝑛)/𝑛 = 𝛽E
(
max(𝑃,W𝑇− 𝑗+1(𝑛)/𝑛)

)
and W𝑇 (𝑛) = 0

This means R 𝑗 = W𝑇− 𝑗 (𝑛)/𝑛 and so

R 𝑗 = 𝛽E
(
max(𝑃,R 𝑗−1

)
and R0 = 0

which is analog to A.12.
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Figure A.1: Values and reservation prices under a deadline 𝑇 = 4. We assume that
demand takes values 1 or 4 with probabilities 𝛼1 = 0.9 and 𝛼4 = 0.1, respectively. The continu-
ation probability is 𝛽 = 0.8, and prices are discrete and uniformly distributed over the interval
[1, 25]. The left panel illustrates the value function over time. As the deadline approaches, the
continuation value declines. The right panel shows reservation prices when the seller holds 𝑛 = 4
units of inventory. As time progresses and the deadline nears, the seller becomes more willing
to accept lower prices, and reservation prices decrease accordingly. In each period 𝑡 = 4− 𝑗 , the
reservation price for holding 𝑛 = 4 − 𝑘 units is given by R𝑖,𝑛−𝑘, 𝑗 = R𝑖+𝑘,𝑛, 𝑗 for all 𝑖 ≤ 4 − 𝑘.
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Config. Unit No Deadline Deadline
Theoretical Empirical Theoretical Empirical

A 1 13 10.22
(0.60)

12 9.84
(0.56)

B
1 13 8.27

(0.39)
12 7.86

(0.51)
2 13 13.09

(0.57)
12 12.86

(0.58)

C
1 10 8.65

(0.44)
8 7.86

(0.37)
2 13 12.77

(0.56)
12 12.27

(0.50)

D 1 9 10.30
(0.55)

7 9.74
(0.56)

E

1 13 6.43
(0.38)

12 6.18
(0.36)

2 13 9.37
(0.46)

12 9.12
(0.45)

3 13 12.19
(0.58)

12 11.90
(0.59)

4 13 15.67
(0.66)

12 16.08
(0.70)

F

1 7 8.22
(0.44)

2 7.12
(0.41)

2 8 11.18
(0.49)

2 10.53
(0.46)

3 10 13.96
(0.56)

8 13.33
(0.55)

4 13 17.18
(0.65)

12 16.48
(0.66)

G
1 9 8.17

(0.45)
7 7.47

(0.45)
2 9 12.45

(0.54)
7 12.63

(0.59)

H
1 6 8.34

(0.47)
1 8.28

(0.44)
2 8 12.36

(0.56)
2 12.64

(0.56)

Table A.1: Reservation values by unit and trading state across configurations, with and without
deadlines.

B Supply curves with deadline

In this section, we graphically compare the empirical and theoretical supply curves for the

case with deadlines.
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(a) Configuration A with deadline. Inventory
level: one unit. Demand distribution: 𝛼1 = 1
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(b) Configuration B with deadline. Inventory
level: two units. Demand distribution: 𝛼2 = 1
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(c) Case C with deadline. Inventory level: two
units. Demand distribution: 𝛼1 = 0.1 and
𝛼2 = 0.9
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(d) Configuration D with deadline. Inventory
level: two units. Demand distribution: 𝛼1 = 1.

Figure B.1: Comparison of Configurations A, B, C, and D with a deadline. The empirical
supply curves reflect average reservation prices for each unit in the first round of the search
process. Error bars indicate 95% confidence intervals, computed using clustered standard errors
from a regression of reservation prices on unit dummies.
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(a) Configuration E with deadline. Inventory
level: four units. Demand distribution: 𝛼4 =

1.
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(b) Configuration F with deadline. Inventory
level: Demand distribution: 𝛼1 = 0.9 and 𝛼4 =

0.1.
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(c) Configuration G with deadline. Inventory
level: four units. Demand distribution: 𝛼2 =

1.
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(d) Configuration H with deadline. Inventory
level: four units Demand distribution: 𝛼1 =

0.9 and 𝛼2 = 0.1.

Figure B.2: Comparison of Configurations E, F, G, and H with a deadline. The empirical
supply curves reflect average reservation prices for each unit in the first round of the search
process. Error bars indicate 95% confidence intervals, computed using clustered standard errors
from a regression of reservation prices on unit dummies.
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Online Appendix

C Screenshots/instructions

Below, we include screenshots from the experiment.

Instructions

Thank you for participating in the study! This study is about how people make decisions. Specifically, we will study how people

choose to sell items when they are uncertain about their opportunities to sell items in the future. On the bottom of every page of

the study, you will be given a short summary of the rules we show on this page for reference.

The study will be split into 8 rounds, and each round will be split into trading stages.

You will start each round with a stock of (imaginary) lobsters that you can sell, but that have no value to you if you don't sell

them. You will be able to trade these lobsters for lottery tickets. At the end of the study, we will randomly select one round to be

the one that counts. Each lottery ticket that you earned in that round will be worth a 1% chance of receiving a bonus payment of

$10.

In each trading stage, you will be matched with a computerized buyer who wants to trade lottery tickets for lobsters. The per-

unit price (in lottery tickets) they are willing to pay and the demand (i.e. number of lobsters that the buyer wants) will be

randomly drawn in each trading stage. The buyer's ticket offer will always be between 1 and 25 tickets per lobster, with each

value being equally likely to be drawn. However, the chances of each amount of demand will change from round to round (but not

between stages within rounds).

Before you see the buyer's offer in a trading stage, you will decide the minimum number of tickets you are willing to trade for

each of your lobsters. For instance, you could state that you would be willing to sell one lobster for 5 lottery tickets, but would

only sell two lobsters for a higher price of 7 tickets per lobster. After you make your choices, your minimum acceptable prices will

be compared to the buyer's random demand and ticket offer. You will sell either the number demanded by the buyer or the

maximum number you were willing to sell (whichever is lower) at the price in lottery tickets offered by the buyer.

After each stage, there is a 20% chance that all of your remaining lobsters (those that have not already been sold) will spoil, and

you will not be able to sell them anymore. To determine whether that will happen, the computer will roll a 100-sided die. If the

result is higher than 80, then the lobsters spoil and the round ends. If the result is less than or equal to 80, then you move on to

the next stage. Even if your lobsters spoil, you keep any lottery tickets you have already received.

Once you have sold all of your lobsters or your remaining lobsters spoil, then you move on to the next round. If all rounds have

been completed, then you will finish the study and find out whether you received the bonus.

On the next few pages, you will see examples of the types of decisions you will face. Look through them to make sure you

understand how the study will work.

Next

Debug info

Basic info

ID in group 1

Group 15991

Round number 1

Participant P1

Participant label

Figure C.1: Instructions - No Deadline
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Instructions

Thank you for participating in the study! This study is about how people make decisions. Specifically, we

will study how people choose to sell items when they are uncertain about their opportunities to sell items in

the future. On the bottom of every page of the study, you will be given a short summary of the rules we

show on this page for reference.

The study will be split into 8 rounds, and each round will be split into trading stages.

You will start each round with a stock of (imaginary) lobsters that you can sell, but that have no value to

you if you don't sell them. You will be able to trade these lobsters for lottery tickets. At the end of the study,

we will randomly select one round to be the one that counts. Each lottery ticket that you earned in that

round will be worth a 1% chance of receiving a bonus payment of $10.

In each trading stage, you will be matched with a computerized buyer who wants to trade lottery tickets

for lobsters. The per-unit price (in lottery tickets) they are willing to pay and the demand (i.e. the

maximum number of lobsters that the buyer wants) will be randomly drawn in each trading stage. The

buyer's ticket offer will always be between 1 and 25 tickets per lobster, with each value being equally likely

to be drawn. However, the chances of each amount of demand will change from round to round (but not

between stages within rounds).

Before you see the buyer's offer in a trading stage, you will decide the minimum number of tickets you

are willing to trade for each of your lobsters. For instance, you could state that you would be willing to

sell one lobster for 5 lottery tickets, but would only sell two lobsters for a higher price of 7 tickets per

lobster. After you make your choices, your minimum acceptable prices will be compared to the buyer's

random demand and ticket offer. You will sell either the number demanded by the buyer or the maximum

number you were willing to sell (whichever is lower) at the price in lottery tickets offered by the buyer.

After each stage, there is a 20% chance that all of your remaining lobsters (those that have not already

been sold) will spoil, and you will not be able to sell them anymore. To determine whether that will happen,

the computer will roll a 100-sided die. If the result is higher than 80, then the lobsters spoil and the round

ends. If the result is less than or equal to 80, then you move on to the next stage. There is also a limit to the

number of stages in each round - once that limit is reached, all of your remaining lobsters are guaranteed

to spoil and the round ends. Even if your lobsters spoil, you keep any lottery tickets you have already

received.

Once you have sold all of your lobsters or your remaining lobsters spoil, then you move on to the next

round. If all rounds have been completed, then you will finish the study and find out whether you received

the bonus.

On the next few pages, you will see examples of the types of decisions you will face. Look through them to

make sure you understand how the study will work.

Next

Figure C.2: Instructions - Deadline

40



Example 1: Alice

In Round 1, Alice starts with 1 lobster. She knows that in each stage, a buyer will arrive offering to buy 1

lobster.

Stage 1: Alice starts the stage with 1 lobster and 0 tickets. She states that she will sell her lobster if the

price offer is at least 8 tickets. The buyer offers to buy one lobster for 3 tickets. Because the offer is lower

than Alice's minimum price, Alice does not sell any lobsters and the stage ends. The computer rolls a 100-

sided die, and the result is less than 80, so the round continues.

Stage 2: Alice starts the stage with 1 lobster and 0 tickets. She states that she will sell her lobster if the

price offer is at least 6 tickets. The buyer offers to buy one lobster for 11 tickets. Because the offer is

higher than Alice's minimum price, Alice sells the lobster and receives the 11 lottery tickets. Because Alice

sold all of her lobsters, the round is over.

Alice earned 11 tickets in total this round, so if this is the round that counts she has an 11% chance of

receiving $10.

Next

Instructions

In each round, you start with a stock of lobsters that have no value to you, but that you can sell for

lottery tickets.

Each lottery ticket is worth a 1% chance of receiving the prize of $10.

Each round is broken up into trading stages:

You will start each stage stating the minimum price you would be willing to accept to sell your

lobsters. You can state different minimum prices for different numbers of lobsters.

In each trading stage, a buyer appears, offering to buy some of your lobsters in exchange for

lottery tickets.

The number of lobsters they are willing to buy and the number of tickets they offer per

lobster are drawn randomly each round. The numbers that can be offered change from round

to round, but prices are always between 1 and 25, with each number equally likely to be

chosen.

If the offered number of tickets per lobster is higher than one of the minimum prices you

state, then you sell the requested number of lobsters or the amount you were willing to sell,

whichever is lower. In return, you earn the offered number of lottery tickets for each lobster

sold.

At the end of each stage, there is a 20% chance that the round ends. There is also a limit to the

number of stages in each round - once that limit is reached, all of your remaining lobsters are

guaranteed to spoil and the round ends. If that happens, or if you sell all of your lobsters, then you

cannot earn any more lottery tickets in that round.

Figure C.3: Example 1

Example 2: Bob

In Round 2, Bob starts with 2 lobsters. He knows that in each stage, a buyer will arrive offering to buy 1 lobster.

Stage 1: Bob starts the stage with 2 lobsters and 0 tickets. He states that he will sell 1 lobster if the price offer is

at least 9 tickets. The buyer offers to buy 1 lobster for 12 tickets. Because the offer is higher than Bob's minimum

price, Bob sells 1 lobster and earns 12 tickets. The computer rolls a 100-sided die, and the result is less than 80,

so the round continues.

Stage 2: Bob starts the stage with 1 lobster and 12 tickets. He states that he will sell his lobster if the price offer

is at least 6 tickets. The buyer offers to buy 1 lobster for 3 tickets. Because the offer is lower than Bob's minimum

price, Bob does not sell any lobster and the stage ends. The computer rolls a 100-sided die, and the result is less

than 80, so the round continues.

Stage 3: Bob starts the stage with 1 lobster and 12 tickets. He states that he will sell his lobster if the price offer

is at least 7 tickets. The buyer offers to buy 1 lobster for 1 ticket. Because the offer is lower than Bob's minimum

price, Bob does not sell any lobsters and the stage ends. The computer rolls a 100-sided die, and the result is

higher than 80, so the lobsters spoil and the round ends.

Bob earned 12 tickets in total this round, so if this is the round that counts he has a 12% chance of receiving $10.

Next

Instructions

In each round, you start with a stock of lobsters that have no value to you, but that you can sell for

lottery tickets.

Each lottery ticket is worth a 1% chance of receiving the prize of $10.

Each round is broken up into trading stages:

You will start each stage stating the minimum price you would be willing to accept to sell your

lobsters. You can state different minimum prices for different numbers of lobsters.

In each trading stage, a buyer appears, offering to buy some of your lobsters in exchange for lottery

tickets.

The number of lobsters they are willing to buy and the number of tickets they offer per lobster are

drawn randomly each round. The numbers that can be offered change from round to round, but

prices are always between 1 and 25, with each number equally likely to be chosen.

If the offered number of tickets per lobster is higher than one of the minimum prices you state, then

you sell the requested number of lobsters or the amount you were willing to sell, whichever is lower.

In return, you earn the offered number of lottery tickets for each lobster sold.

At the end of each stage, there is a 20% chance that the round ends. There is also a limit to the number

of stages in each round - once that limit is reached, all of your remaining lobsters are guaranteed to spoil

and the round ends. If that happens, or if you sell all of your lobsters, then you cannot earn any more

lottery tickets in that round.

Figure C.4: Example 2
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Example 3: Charlie

In Round 3, Charlie starts with 4 lobsters. He knows that in each stage, there is a 50% chance that the buyer will

offer to buy 1 lobster, and a 50% chance that the buyer offers to buy up to 2 lobsters.

Stage 1: Charlie starts the stage with 4 lobsters and 0 tickets. He states that he will sell 1 lobster if the price offer

is at least 5 tickets and 2 lobsters if the price offer is at least 9 tickets. The buyer offers to buy up to 2 lobsters for

15 tickets each. Because the offer is higher than Charlie's minimum price for 2 lobsters, Charlie sells 2 lobsters

and earns 30 tickets. The computer rolls a 100-sided die, and the result is less than 80, so the round continues.

Stage 2: Charlie starts the stage with 2 lobsters and 30 tickets. He states that he will sell 1 lobster if the price

offer is at least 4 tickets and 2 lobsters if the price offer is at least 11 tickets. The buyer offers to buy up to 2

lobsters for 9 tickets each. Because the offer is higher than Charlie's minimum price for 1 lobster but lower than

his minimum price for 2 lobsters, Charlie sells 1 lobster and earns 9 tickets. The computer rolls a 100-sided die,

and the result is higher than 80, so the lobsters spoil and the round ends.

Charlie earned 39 tickets in total this round, so if this is the round that counts he has a 39% chance of receiving

$10.

Next

Instructions

In each round, you start with a stock of lobsters that have no value to you, but that you can sell for

lottery tickets.

Each lottery ticket is worth a 1% chance of receiving the prize of $10.

Each round is broken up into trading stages:

You will start each stage stating the minimum price you would be willing to accept to sell your

lobsters. You can state different minimum prices for different numbers of lobsters.

In each trading stage, a buyer appears, offering to buy some of your lobsters in exchange for lottery

tickets.

The number of lobsters they are willing to buy and the number of tickets they offer per lobster are

drawn randomly each round. The numbers that can be offered change from round to round, but

prices are always between 1 and 25, with each number equally likely to be chosen.

If the offered number of tickets per lobster is higher than one of the minimum prices you state, then

you sell the requested number of lobsters or the amount you were willing to sell, whichever is lower.

In return, you earn the offered number of lottery tickets for each lobster sold.

At the end of each stage, there is a 20% chance that the round ends. There is also a limit to the number

of stages in each round - once that limit is reached, all of your remaining lobsters are guaranteed to spoil

and the round ends. If that happens, or if you sell all of your lobsters, then you cannot earn any more

lottery tickets in that round.

Figure C.5: Example 3
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Round 1, Stage 1

You currently have a stock of 4 lobsters and so far, you have 0 lottery tickets in this round.

There is a 20% chance that your lobsters will spoil after this stage.

In this round, there is a 90% chance that the number of lobsters demanded is 1 and 10% chance that it is 2. That means that

given your stock, the maximum you could sell is 2.

In the boxes below, please list the minimum number of lottery tickets per lobster you would be willing to accept to sell each

number of lobsters up to 2. Remember that the numbers you list must be between 1 and 25, and the minimum number of tickets

must increase with the number of lobsters.

Minimum price per unit to sell 1 unit

Minimum price per unit to sell 2 units

Next

Demand Chances

90.00 %90.00 %90.00 %

10.00 %10.00 %10.00 %

Demand of 1 Demand of 2

Instructions

In each round, you start with a stock of lobsters that have no value to you, but that you can sell for lottery tickets.

Each lottery ticket is worth a 1% chance of receiving the prize of $10.

Each round is broken up into trading stages:

You will start each stage stating the minimum price you would be willing to accept to sell your lobsters. You can

state different minimum prices for different numbers of lobsters.

In each trading stage, a buyer appears, offering to buy some of your lobsters in exchange for lottery tickets.

The number of lobsters they are willing to buy and the number of tickets they offer per lobster are drawn randomly

each round. The numbers that can be offered change from round to round, but prices are always between 1 and 25,

with each number equally likely to be chosen.

If the offered number of tickets per lobster is higher than one of the minimum prices you state, then you sell the

requested number of lobsters or the amount you were willing to sell, whichever is lower. In return, you earn the

offered number of lottery tickets for each lobster sold.

Figure C.6: Reservation Prices - No Deadline
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Round 1, Stage 1

You currently have a stock of 1 lobster and so far, you have 0 lottery tickets in this round.

There is a 20% chance that your lobsters will spoil after this stage. Furthermore, there are 3 stages left, including this one,

before all of your lobsters are guaranteed to spoil.

In this round, the number of lobsters demanded is guaranteed to be 1. That means that given your stock, the maximum you could

sell is 1.

In the box below, please list the minimum number of lottery tickets you would be willing accept to sell your lobster. Remember

that the price you list must be between 1 and 25.

Minimum price per unit to sell 1 unit

Next

Demand Chances

100.00 %100.00 %100.00 %

Demand of 1

Instructions

In each round, you start with a stock of lobsters that have no value to you, but that you can sell for lottery tickets.

Each lottery ticket is worth a 1% chance of receiving the prize of $10.

Each round is broken up into trading stages:

You will start each stage stating the minimum price you would be willing to accept to sell your lobsters. You can

state different minimum prices for different numbers of lobsters.

In each trading stage, a buyer appears, offering to buy some of your lobsters in exchange for lottery tickets.

The number of lobsters they are willing to buy and the number of tickets they offer per lobster are drawn randomly

each round. The numbers that can be offered change from round to round, but prices are always between 1 and 25,

with each number equally likely to be chosen.

If the offered number of tickets per lobster is higher than one of the minimum prices you state, then you sell the

requested number of lobsters or the amount you were willing to sell, whichever is lower. In return, you earn the

offered number of lottery tickets for each lobster sold.

At the end of each stage, there is a 20% chance that the round ends. There is also a limit to the number of stages in

each round - once that limit is reached, all of your remaining lobsters are guaranteed to spoil and the round ends. If that

happens, or if you sell all of your lobsters, then you cannot earn any more lottery tickets in that round.

Figure C.7: Reservation Prices - Deadline

Results: Round 1, Stage 1

In this stage, the buyer offered 21 lottery tickets per lobster. On the previous page, you reported that the minimum you would

accept to sell one lobster is 25. Because the random price is below this, you have not agreed to sell any lobsters at this price.

This stage's random demand was 1. That means that you sold 0 lobsters and received 0 lottery tickets this stage.

You have accumulated a total of 0 lottery tickets through sales in this round.

Next

Debug info

Basic info

ID in group 1

Group 15991

Round number 1

Participant P1

Participant label

Session code 3ouiubrw

Figure C.8: Stage Results - No Sales
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Results: Round 2, Stage 1

In this stage, the buyer offered 22 lottery tickets per lobster. That is higher than the highest minimum acceptable price you

reported on the previous page, so you have agreed to sell up to 4 lobsters at this price.

This stage's random demand was 4. That means that you sold 4 lobsters and received 88 lottery tickets this stage.

You have accumulated a total of 88 lottery tickets through sales in this round.

Next

Debug info

Basic info

ID in group 1

Group 1502

Round number 2

Participant P1

Participant label

Session code wrkwfjpm

Figure C.9: Stage Results - Sales

Continuation: Round 1, Stage 1

You sold your full stock so this round is over. You accumulated a total of 21 lottery tickets in this round, so if this round is chosen

to be the one that counts, you have a 21% of receiving a bonus payment of $10.

Next

Debug info

Basic info

ID in group 1

Group 1501

Round number 1

Participant P1

Participant label

Session code wrkwfjpm

Figure C.10: Continuation - Full inventory Sold

Continuation: Round 4, Stage 1

The computer randomly rolled a 96, which is higher than 80. That means that this round is over.

Next

Debug info

Basic info

ID in group 1

Group 1506

Round number 6

Participant P1

Participant label

Session code wrkwfjpm

Figure C.11: Continuation - Random Termination

Continuation: Round 3, Stage 3

All of your lobsters were guaranteed to spoil after the last stage, so this round is over. You accumulated a total of 0 lottery tickets

in this round, so if this round is chosen to be the one that counts, you have a 0% of receiving a bonus payment of $10.

Next

Debug info

Basic info

ID in group 1

Group 1505

Round number 5

Participant P1

Participant label

Session code wrkwfjpm

Figure C.12: Continuation - Deadline Reached
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Final Results

That was the last round. The round that counts was number 8. In that round, you accumulated a 29.0% chance of winning the

prize.

We can now inform you that you did not win the prize. That means you will not receive a bonus.

Next

Debug info

Basic info

ID in group 1

Group 16245

Round number 15

Participant P1

Participant label

Session code ntxi8shx

Figure C.13: Final Results
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