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Abstract

We experimentally study sequential rationality in the Game of Chomp, a two-player win-

lose game whose rules are simple but whose subgame-perfect Nash equilibria vary in complex-

ity across initial states. Subjects frequently deviate from SPNE: the probability of making an

SPNE-consistent move falls with the distance to the end of the game, and most can correctly

implement SPNE only three to five moves ahead. Experience mainly improves play at interme-

diate distances. We also document a common opening heuristic that, although often theoretically

suboptimal, is still associated with higher chances of winning.
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1 Introduction

Finite games of perfect information are among the simplest settings in which game theory delivers
sharp predictions. Backward induction is a simple yet powerful solution concept that one might
expect subjects to implement, yet real players may be unable to represent even moderately com-
plex games as a tree or to carry out backward induction on large or intricate trees. Limited depth
of reasoning, noisy best responses, and mis-learning can all undermine sequential rationality, and
their impact is likely to grow with the game’s complexity. This paper studies how much of the op-
timal play predicted by theory survives when players are boundedly rational, and how the resulting
advantage varies across states within the same game.

In this paper, we study behavior in the Game of Chomp, a sequential, finite, perfect-information,
two-player game introduced in Gale (1974). The game is played on an n × m rectangular grid of
boxes. Players select one of the remaining boxes sequentially, and when any box is selected for
removal, all those below and to the right of it are also removed. The player forced to remove the
top-left box loses the game. The Game of Chomp has a first-mover advantage: under sequentially
rational play, the first mover should always win. However, optimal play varies substantially depend-
ing on the initial dimensions of the game and does not, in general, follow a simple pattern. For this
reason, the complexity and length of the game are easy to vary between matches without chang-
ing the fundamental ruleset, making it an ideal testing ground to measure how real-life participants
deviate from sequential rationality as complexity varies.

This paper describes an experimental implementation of the Game of Chomp. We randomly
match participants into groups of two to play the game. Roles (player 1 versus player 2) and initial
game state (the dimensions of the grid) are randomized in each match. Participants are told that at
the end of the experiment, one match would be chosen at random to be the match that determines
payment. The winner of that match receives AUD$65, while the loser receives AUD$15.

Not surprisingly, participants are not perfectly consistent with sequential rationality. Even
though the player chosen to move first has the power to win with certainty, they only win the game
51.72% of the time. However, this masks substantial heterogeneity across grids: Some initial game
states exhibit player 1 win rates of upwards of 60%, while others have player 1 win rates that are
lower than 40%.

We then investigate the determinants of deviations from sequential rationality. We find that a
key determinant for whether a player makes a winning move is the distance to the end of the game
according to the subgame perfect equilibrium path. This distance to the end of the game interacts
with learning in an intuitive way: most learning (the increase in the likelihood of optimal play that
is associated with experience) accumulates in game states that are of “intermediate” complexity –
those that are 3-5 moves away from the end of the game. Finally, we show that subjects often chose
the box (2, 2) as the initial move of the game, despite it being theoretically suboptimal in non-square
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games. This may be in an effort to simplify the game, as many subjects appear to have learned to
play optimally in the resultant “L-shaped” games.

The paper is organized as follows. Section 2 reviews the most relevant literature. Section 3
formally introduces the Game of Chomp, characterizes its subgame perfect Nash equilibria, and
outlines our hypotheses. Section 4 details the experimental design. Section 5 presents the main
findings on game outcomes and behavior in losing positions, and Section 6 investigates the under-
lying drivers of these behaviors. Section 7 offers concluding remarks.

2 Related Literature

There has been a substantial amount of experimental research into people’s decisions in dynamic
games with perfect information. Previous research has shown that deviations from the theoretical
predictions likely stem from social preferences, limitations in backward induction, and complexity
of the games.

Rosenthal (1981) introduced the Centipede Game, a dynamic game with perfect information,
where two players take turns choosing to pass or stop at each node of the game. Continuing (usually)
increases the total payoff for the group, but stopping gives the active player a higher proportion of
the current total payoff. Generally, games are constructed so that in the subgame perfect Nash
equilibrium (SPNE), subjects should choose to stop at the first node of the game. However, results
from experimental studies of this game show that this does not match behavior. The Centipede
Game was first studied experimentally in McKelvey and Palfrey (1992), which concludes that the
failure to adhere to the SPNE is due to a mixture of altruism and decision noise. The existence
of “altruists,” who always choose “pass” at each node of the game, makes players more likely to
continue the game if they believe their opponents are altruists. Fey et al. (1996) studies Centipede
Games in which the total payoff does not increase with each pass, finding that Quantal Response
Equilibrium fits behavior the best. Rapoport et al. (2003), in turn, compares Centipede Games under
high and low stakes, finding that behavior is closer to SPNE and learning is stronger when stakes are
high. Palacios-Huerta and Volij (2009) show that when professional chess players play Centipede
Games against each other, outcomes are much closer to SPNE, whereas Levitt et al. (2011) find that
even expert chess players who successfully solve a related “race to 100” game often fail to stop early
in Centipede Games. In contrast to Centipede Games, a fully rational player acting as the first mover
in the Game of Chomp does not need to form beliefs about the other player, because the game is
zero-sum and has a binary outcome. Thus, any deviations from the SPNE can be attributed purely
to the player’s own ability to engage in backward induction.

Another strand of the experimental literature uses the “Race Game,” which is a finite sequential
zero-sum game of perfect information, to study how cognitive limitations and learning affect the
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implementation of backward induction. The game’s rules can be described as follows: The state
of the game at any point is represented as an integer m. Players take turns selecting a number
k ∈ {1, . . . , k̄}, which is subtracted from the current state. The player who brings the state to
zero wins the game. The Race Game has a simple winning strategy, and if the current state is a
winning position, the player whose turn it is can guarantee victory regardless of the opponent’s
play (Dufwenberg et al., 2010; Gneezy et al., 2010). This strategy involves a relatively simple rule,
depending only on m and k̄. Both Dufwenberg et al. (2010) and Gneezy et al. (2010) focus on how
learning this rule can transfer between different parameterizations (and perhaps subgames) of the
game. Rampal (2025) uses the Race Game to compare behavioral game theoretic models, finding
that the level-k model is the best fit for behavior in “short” games while the Limited Foresight
Equilibrium of Rampal (2022) is better at explaining behavior in “longer” games. In contrast to the
Race Game, the Game of Chomp does not in general admit a simple rule governing equilibrium
play, so there is less reason to expect a single moment of “epiphany”’ after which subjects play
optimally.

The game of Nim, introduced in Bouton (1901), is a finite sequential zero-sum game of perfect
information in which players alternately remove objects from a set of piles and the player who takes
the last object wins. Bouton (1901) provides a complete solution, showing that every position can be
classified as winning or losing, and provides a constructive procedure for optimal play. McKinney Jr
and Van Huyck (2007) use Nim to show how increasing game complexity (measured by rank and
related tree-based measures) reduces effective play: most subjects perform well only up to about
rank 6, though a few can solve games up to rank 17. In follow-up work, McKinney Jr and Van Huyck
(2013) find that learning mainly takes the form of “eureka” discovery of narrow heuristics, such as
move-copying in two-row games, with little evidence that subjects acquire the full Bouton algorithm
or more complex heuristics. In contrast to Nim, general Chomp positions do not admit a comparably
simple global solution or a single dominant heuristic, so a Chomp experiment can shed light on how
boundedly rational players search, form and transfer local heuristics in a structurally rich class of
games.

Traditional game-theoretic models typically assume that players can carry out backward induc-
tion regardless of a game’s complexity. Experimental work, however, shows that complexity mat-
ters: subjects perform better in simpler versions of the same strategic environment. Recent research
has studied different facets of complexity. Oprea (2020) and Banovetz and Oprea (2023) show that
subjects both find complex, multistep, and mentally implemented rules harder to follow and system-
atically choose simpler procedures because they are averse to implementing complex ones. Pycia
and Troyan (2023) formalize complexity in terms of foresight, distinguishing between agents by
how far they can plan into the future. Nagel and Saitto (2023) propose a measure of strategic com-
plexity for mechanisms based on how many alternative actions or plans a player must compare in
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Figure 1: Extensive form of the Game of Chomp, with its Subgame Perfect Equilibrium highlighted.

order to recognize a dominant strategy. The Game of Chomp provides a convenient testbed for these
ideas: it has simple rules and direct winning strategies for square and n× 2 grids, while variation in
grid size and position allows us to vary both the number of available moves and the distance to the
end of the game.

3 Theoretical Background

3.1 The Game of Chomp

The Game of Chomp, introduced by Gale (1974), is a dynamic game of complete information. The
game’s initial state is an n×m grid of boxes.1 Two players take turns choosing from the remaining
set of boxes. When a box is chosen, all boxes below and to the right of the chosen box are removed
from the grid. Both players can always see the remaining boxes when they make their move. The
player who is forced to remove the final (top-left) box is the loser.

Because Chomp is a finite game, it can be represented in extensive form. Figure 1 shows the
game trees for grid sizes 2×2 and 3×2. The 2×2 game has only four terminal nodes. The extensive
form of the 3 × 2 appears substantially more complex, with 24 terminal nodes. This complexity of
the extensive form grows quickly with the dimensions of the game.

3.2 Winning Strategy for the First Player

Gale (1974) showed that the Game of Chomp is a first-mover advantage game: Player 1 can always
guarantee a win with optimal play. Gale provides a non-constructive proof: Suppose Player 1 loses
in the SPNE by choosing the initial move at the bottom right (n, m). Since choosing (n, m) leads to a
loss, Player 2 has a best response, (a, b), that puts Player 1 into a losing position. However, Player 1

1Throughout the paper, we adopt the conventions that (1) an n × m game has n rows and m columns, (2) the
first-mover is referred to as Player 1, and (3) the game is over when only a single box remains.
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could have initially chosen (a, b), thus forcing Player 2 into a losing position. This is called “strategy
stealing” (Berlekamp et al., 2004). Therefore, Player 1 can always win if he plays optimally. While
there can be more than one optimal initial move in the Game of Chomp, the smallest grid size with
more than one optimal initial move is 8× 10 (Gale, 1974).

A standard method for identifying a winning strategy in an extensive-form game such as Chomp
is to determine the SPNE through backward induction. This involves analyzing the final player’s
move: assuming sequential rationality, the player selects the action that maximizes their payoff if
the game reaches that point. Given this choice, the preceding player then optimally responds, and
so on. In Chomp, this process classifies every possible game state as either a winning or a losing
position: a state is winning if at least one available move leads to a losing position, and losing if all
moves lead to winning positions. Starting from the terminal 1 × 1 position, which is losing, each
other state can be classified recursively in this way. However, because the number of possible states
in a game of size n × m is

(
n+m
n

)
(Zeilberger, 2001), the strategy space grows combinatorially,

conceivably making it difficult for decision-makers to identify winning strategies in larger Chomp
games.

While it is difficult in general to compute Chomp’s SPNE, there are simple and straightforward
winning strategies for square games and n× 2 games, both of which are described in (Gale, 1974).

Square Games: For a square grid of n × n, Player 1’s optimal strategy is to initially choose the
box at position (2,2). This results in an L-shaped game state with an equal number of boxes in each
arm. Then, Player 1 mirrors all of Player 2’s choices until the end of the game. For instance, on
their next turn, Player 1 selects (1,a) or (a,1) if Player 2 selects (a,1) or (1,a), respectively. Player 1
repeats this process until she wins the game.

n× 2 Games: For grids that have either two columns or two rows, Player 1 wins by making
the initial move at the bottom right box, which is (n, 2) or (2,m). This initial move results in an
imbalanced game state, where the first column or row has one more box than the second. Regardless
of Player 2’s choices, Player 1 responds by selecting a box that maintains this imbalance. This
guarantees a sure win for Player 1.

4 The Experiment

4.1 Experiment procedures

The experiment was conducted with two treatments: Mixed Shapes (MS) and Rectangle Only (RO).
The MS treatment consisted of four sessions completed in August 2024, while the RO treatment
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consisted of two sessions completed in May 2025. All sessions took place in-person at the Uni-
versity of Queensland’s Centre for Unified Behavioural and Economic Sciences Laboratory. The
experiment was coded using oTree (Chen et al., 2016). Each session lasted 90 minutes, and no
participant took part in more than one session.

In the experiment, subjects were provided with the game’s instructions orally, on paper, and
on their computer screen.2 The instructions page provided an example grid size of 10 × 10 and
explained how their choices changed the state of the game. Subjects could examine this by clicking
on any box. Subjects were randomly rematched each round and continued playing new games of
Chomp until the 65-minute session limit was reached, with the first match to finish after this cutoff
serving as the final match of the experiment. Roles (Player 1 or Player 2, with Player 1 moving first)
were randomly assigned in each round. The dimensions of the grid were also randomly selected
for each group and each round, and the set from which they were selected differed according to
the treatments that are discussed below. After the games were completed, subjects were asked to
complete a short survey that included demographic questions, a cognitive reflection test (Frederick,
2005), and space to provide feedback on the experiment and their behavior.

Each Chomp game began with a grid of boxes. The top left box was yellow, and the others were
white. The two players took turns selecting a box. Each time a box was selected, all the boxes below
and to the right of it turned green. After the player clicked the “Submit” button, these boxes were
removed from the grid. Each player had 30 seconds to make their selection. They could change their
choice as many times as they wanted within the given time. After making their final decision, they
had to click the “Submit” button to proceed to the next round.3 Figure 2 shows an example of the
choice page for Player 2 in a game with dimension 6× 4 after Player 1 chose (4,3) in the first round.
In each match, the winning player received AUD$65, while the losing player received AUD$15. At
the end of this part, the computer randomly selected one match to count for the final payoff. Thus,
the average payoff was AUD$40 for the 90-minute experiment.

Our experiment used a between-subjects design that varied the grid sizes subjects faced. In the
MS (“mixed-shape”) treatment, grids were randomly drawn from 2× 2, 3× 2, 4× 2, 4× 3, 5× 3,
8× 3, 4× 4, 6× 4, 6× 5, and 6× 6; among these, 2× 2, 4× 4, and 6× 6 are square, while the rest
are rectangular.4 In the RO (“rectangular-only”) treatment, grids were randomly drawn from 3× 2,
4× 2, 6× 2, 4× 3, 5× 3, 6× 3, 8× 3, 5× 4, 6× 4, and 6× 5.5

2Screenshots of all parts of the experiment can be found in Appendix B.
3If a player did not click “Submit” before time ran out, the computer randomly selected a box from all remaining

boxes in the grid with equal chance. In our experiment, the timeout occurred in 351 out of 7425 turns. In order to
avoid selection effects, our data analysis treats the random computer-generated choices as if they were made by the
participant. Appendix Figure 9 shows how the proportion of turns that ended with a timeout is related to the number of
available boxes.

4Here and throughout the remainder of the paper, we use the term “rectangular” to refer to games that are not square.
5As we discuss in Section 6.3, the most common initial move in the MS treatment is (2, 2). Because this is the

SPNE move in the square games in our design, we conjectured that subjects were learning that (2, 2) works well on
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Figure 2: Choice page of Player 2

As the grid size increases, the complexity of SPNE and backward induction may also increase.
The simplest versions of square games and n× 2 games are 2× 2 and 3× 2, respectively. Grid sizes
of 4 × 4 and 6 × 6 are examples of large dimensions for square games, while 4 × 2 and 6 × 2 are
examples of n×2 games. The winning strategies in these games follow a simple rule, while optimal
strategies in the rest of the rectangular games vary based on the dimensions of the grids. Also, all
the grid sizes used in the experiment are smaller than 8× 10. Therefore, each grid size has a unique
optimal initial move.

4.2 Hypotheses

This subsection outlines the main hypotheses we test in our experimental framework. The rational
benchmark delivers stark predictions in this setting: regardless of the current state of the game, play-
ers should always choose actions consistent with the SPNE, which in winning positions typically
restricts play to a small subset of the many available options. Prior experimental work suggests that
such behavior is rare. We therefore base our hypotheses on a combination of theoretical intuition
and existing empirical findings, rather than on the SPNE benchmark alone.

For our first hypothesis, we consider how the game’s initial state affects the likelihood that Player
1 will win the game. Under SPNE, the first mover should always win. However, this prediction relies
on the prediction that Player 1 plays optimally even when not near the end of the game. A single

square boards and then misapplying this heuristic to rectangular boards. The RO treatment was therefore designed to
eliminate all cases in which (2, 2) is optimal. Nonetheless, (2, 2) remained a common initial choice in the RO treatment.
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error along the equilibrium path would put Player 2 into a winning position. For this reason, we
expect that Player 1 is more likely to be able to win when the game is smaller and when the SPNE
strategy is simpler.

Hypothesis 1. “Player 1” is more likely to win “smaller” games, square games, and N × 2 games.

Our next hypothesis considers how players should choose when they are in a losing position. In
these cases, SPNE gives no predictions, because all moves are expected to lead to a loss. However,
Hypothesis 1 in combination with a recognition that players will make errors naturally leads to an
intuitive strategy in these cases: a player in a losing position should remove fewer boxes in order to
maintain the game’s complexity and leave more chances for the other player to make a mistake.

Hypothesis 2. Players tend to remove fewer boxes when they are in a losing position than in a

winning position.

Our next hypothesis considers how players’ ability to implement SPNE varies with the state
of the game. Generally, we expect that in more complex states subjects will be less able to play
according to SPNE. We focus on two dimensions of complexity. First, a simple measure is the
number of options available to the decision-maker. Second, implementing SPNE can require looking
many moves ahead and evaluating multiple contingencies, so depth of reasoning may also be a
constraint. When a subject is near the end of the game, fewer contingencies need to be considered
and SPNE may be easier to implement. This is consistent with previous research, which finds
that subjects are more likely to choose “take” near the end of the Centipede Game and to choose
optimally near the end of the Race Game (McKelvey and Palfrey, 1992; Gneezy et al., 2010)

Hypothesis 3. Players’ moves are more likely to coincide with SPNE when there are fewer options

available and when there are fewer steps remaining on the equilibrium path.

Our final hypothesis is related to how behavior changes with experience. Previous work has
tended to find that players’ behavior becomes closer to SPNE as they gain experience (Dufwenberg
et al., 2010; McKinney Jr and Van Huyck, 2013; Rampal, 2025). We expect similar results to hold
for the Game of Chomp.

Hypothesis 4. Players’ moves are more likely to coincide with SPNE as they gain experience.

5 Results

There were a total of 124 participants across the two treatments: 80 subjects completed 796 games
across four sessions of MS and 44 subjects completed 486 games across two sessions of RO. Gen-
erally, our results are not substantially different between treatments. Subjects made choices 7425
times across 1282 games in the experiment, implying that the average number of turns per game
was about 5.8. We report summary statistics for our demographic variables in Appendix Table 5.
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5.1 Winner of the Game

This section considers the outcome of the game: who won, and under what conditions.

Result 1. Player 1 won roughly half of the time, and was more likely to win in “smaller” games and
in square games. Player 1 did not win more often in N × 2 games.

Result 1 shows that we partially reject Hypothesis 1. The evidence for Result 1 can be found in
Figure 3, which shows a histogram of win rates for subjects in the role of Player 1, Figure 4, which
shows win rates according to the initial game state and Appendix Table 6, which reports regressions
of Player 1 winning on a game’s initial characteristics.

Overall, Player 1 won in 663 out of 1282 games (a winning rate of 51.7%). Figure 3 shows
that the winning rate varied widely by subject. Two subjects had winning rates that were above 0.9,
and two never won when playing as Player 1. The histogram is left-skewed, with a peak winning
proportion that falls between 0.6 and 0.65.6
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Figure 3: Histogram of proportion of winning as Player 1

We further analyze the winning proportions for Player 1 on different grid sizes and shapes.
The left panel of Figure 4 shows the proportion of wins by Player 1 for different grid sizes, using
observations from two separate treatments, while the center and right panels pool observations from
both treatments to compare grid shape. Overall, subjects won more often with square games than
with rectangular ones (roughly 70% vs below 50%) and less often with N × 2 grids as compared to
other shapes (around 49% vs above 52%). All square grid sizes have a winning proportion above

6Appendix Figure 10 shows the CDF for subject win rates split between the MS and RO treatments. The CDFs are
almost identical.
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0.5, with the highest winning rate of approximately 0.9 for grid size 2×2, whereas the figure for the
majority of rectangular grid sizes is less than 0.5. In the MS treatment, the only rectangular games
that have a winning proportion higher than 50% are the 3 × 2 and 6 × 4 games. In RO treatment,
3× 2, 5× 3, and 6× 5 games have a winning proportion higher than 0.5.
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Figure 4: Winning proportion of Player 1 by grid size and shape. In the left panel, blue columns
represent results from the MS treatment and grey from the RO treatment.

Column (1) of Appendix Table 6 reports a regression where the dependent variable is an indicator
for Player 1 winning the game and the independent variables include characteristics of the initial
game states. The regression shows that Player 1 wins square games roughly 20 percentage points
more often than rectangular games, and that each additional available box at the start of the game is
associated with a 0.44 percentage point drop in Player 1 winning. N × 2 grids are associated with
a 5 percentage point decrease in winning rates, but this relationship is not statistically significant.
Column (2) explores the pathway of these effects by controlling for whether Player 1 played the
SPNE move in their first turn. The coefficients on Square Game and Num. Available Boxes become
near zero, while the coefficient on N × 2 becomes negative and significant. This suggests that
the apparent advantage of square and smaller boards operates mainly through their effect on the
likelihood that Player 1 chooses the SPNE opening, but that conditional on that opening choice and
other controls, grids with two columns are intrinsically less favorable to Player 1 than other shapes.

5.2 Moves Made from a Losing Position

All game states in Chomp can be classified as either winning or losing. In a winning state, a player
who follows an SPNE strategy at the current and all future nodes is guaranteed to win. Because
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only a small subset of moves is optimal, SPNE provides sharp predictions for behavior in winning
positions. By contrast, in a losing state SPNE implies that every available move ultimately leads to a
loss and therefore does not distinguish among actions at that state—it does not make any prediction
about what players will do. In this section, we study how players actually behave in these losing
positions.

To test Hypothesis 2, which states that players in a losing position will remove fewer boxes, we
need to account for several other features of the game’s state. In particular, there are characteristics
of the current position that are correlated with whether it is winning or losing and are also likely
to affect how many boxes are removed. These include the current number of boxes in the grid,
how close the player is to the end of the game under rational play, and how many boxes should be
removed in the corresponding winning position according to SPNE.7

Result 2. Players do not remove significantly fewer boxes from losing positions than from compa-
rable winning positions.

The evidence for Result 2, which offers little support for Hypothesis 2, is presented in Table
1. The regressions relate the number of boxes removed to characteristics of the current game state,
controlling for “Match Number” (a proxy for experience), the current number of available boxes,
and the number of moves left according to SPNE (discussed further in Section 6.1).

Column (1) of Table 1 shows that, controlling for other characteristics of the game state, players
in a winning position remove about 0.1 more boxes than players in a losing position, on average.
This difference is statistically significant but very small in magnitude: players must remove at least
one box, and the average number of boxes removed is 2.88. When we additionally control for the
number of boxes that should be removed in the corresponding winning position according to SPNE,
the difference between winning and losing positions is no longer statistically significant.

7In cases where there are multiple SPNE moves, we define this variable as the maximum number of boxes that can
be removed while remaining consistent with SPNE.
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Dependent variable: Number of boxes removed

FE (1) FE (2)

Winning Position 0.1007∗∗ 0.1041
(0.0397) (0.1006)

Winning Position x SPNE Boxes Removed −0.0032
(0.0880)

Num. Available Boxes 0.6526∗∗∗ 0.6556∗∗∗

(0.0271) (0.0844)

Match Number −0.0421∗∗∗ −0.0421∗∗∗

(0.0056) (0.0056)

SPNE Moves Left −0.4217∗∗∗ −0.4252∗∗∗

(0.0348) (0.0888)

Observations 7,425 7,425
Adjusted R2 0.7001 0.7001

Note: Standard errors are clustered at the subject level, and subject fixed effects are
included. Significance: *** p<0.01, ** p<0.05, * p<0.1.

Table 1: Regression on number of boxes removed

Although not our main focus, the coefficients on the other covariates are informative. Unsurpris-
ingly, players remove more boxes when more boxes are available. Less obvious is that the negative
and statistically significant coefficient on “Match Number” indicates that subjects remove fewer
boxes as they gain experience. In addition, even holding the current number of boxes fixed, players
remove fewer boxes when they are closer to the end of the game along the SPNE path. Overall, we
do not find strong evidence in favor of Hypothesis 2.

6 Patterns and Determinants of Play

The results in Section 5 show that while subjects in our experiment do not behave exactly as theory
predicts, there are clear patterns in how they choose, and these patterns depend on the state of the
game that they face. In this section, we explore the drivers of behavior in the Game of Chomp.
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6.1 Complexity and Limited Backward Induction

Most game-theoretic solution concepts, including SPNE, implicitly assume that decision makers
face no constraints on their ability to compute equilibria. In practice, however, even computers
cannot fully solve complex games such as chess or Go (Simon, 1955). Experimental evidence in
McKinney Jr and Van Huyck (2007, 2013) similarly shows that game complexity limits subjects’
ability to choose according to equilibrium. Thus, the complexity of the game is a natural candidate
determinant of how subjects actually play. In this subsection, we investigate which features of the
Game of Chomp make it difficult for players to implement backward induction.8

We focus on two sources of complexity: (i) the number of options available to the player and
(ii) how far into the future the player must reason. The first is captured by the number of available
boxes, since a player always chooses from the set of boxes that remain (except for the top-left box).
To quantify the second, we define the variable “SPNE Moves Left,” which measures the number
of moves remaining along a particular SPNE path. More specifically, we use backward induction
on the game tree, breaking indifference for the player in a losing position by selecting the option
that pushes the end of the game furthest into the future, and for the player in a winning position by
selecting the option that brings the end of the game closest. Using this rule, “SPNE Moves Left” is
defined as the number of turns until the game ends.9 Table 2 shows the values of these variables for
each of the initial game states used in our experiment, and Appendix Figure 11 shows graphically
how each measure is related to the likelihood of choosing in a way that is consistent with SPNE.

8A natural question is whether standard bounded-rationality models such as level-k, cognitive hierarchy, or quantal
response equilibrium (QRE) can account for our findings (Nagel, 1995; Camerer et al., 2004; McKelvey and Palfrey,
1995). In a perfect-information win-lose game like Chomp, canonical level-k and cognitive hierarchy models would
predict that any type above level 0 plays very close to SPNE, once she computes a best response, which conflicts with
the large, depth-dependent errors we observe. Likewise, QRE treats deviations as payoff-sensitive noise that is roughly
homogeneous across states, whereas in our data error rates depend strongly on the distance to the end of the game. These
patterns are more naturally captured by our notion of limited foresight and complexity-driven computational constraints.

9By construction, all winning positions have an odd number of moves left, while all losing positions have an even
number of moves left.
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Grid Size Moves Left Available boxes

2x2 3 4
3x2 5 6
4x2 7 8
4x3 7 12
4x4 7 16
5x3 11 15
5x4 11 20
6x2 11 12
6x3 11 18
6x4 11 24
6x5 15 30
6x6 11 36
8x3 15 24

Table 2: Summary of available boxes and moves left for grid size.

Result 3. SPNE-consistent play falls sharply with the steps remaining on the equilibrium path and,
conditional on that distance and the shape of the game, is essentially unrelated to the number of
available options.

The evidence for Results 3, which partially contradicts Hypothesis 3, can be found in Table 3,
which presents fixed-effects regressions where the dependent variable is an indicator for making a
winning move.10 We restrict the sample to choices made from winning positions, so the outcome
equals one if the subject selects a move that guarantees they will be in a winning position when they
next move and zero otherwise. The independent variables are characteristics of the game state the
subject faces. All specifications include Match Number, our proxy for experience.11 Our main focus
in this analysis is on the variables “Num. Available Boxes” and “SPNE Moves Left,” which capture
different aspects of the complexity of the subject’s current state.

10Implicitly, these regressions use the likelihood of making an SPNE-consistent move as a proxy for complexity. As
an alternative proxy, we can consider the time subjects took to make each move, although each turn was capped at 30
seconds. Appendix Figure 12 shows that decision time increases with SPNE moves left and the number of available
boxes for low values of these variables, but then levels off at about 20 seconds.

11The coefficient on Match Number is positive, indicating the intuitive result that as subjects gain experience they
are more likely to make a winning move. We address learning more explicitly in Section 6.2.
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Dependent variable: SPNE Consistent Move

FE (1) FE (2) FE (3) FE (4)

Match Number 0.0042∗∗∗ 0.0056∗∗∗ 0.0057∗∗∗ 0.0056∗∗∗

(0.0011) (0.0010) (0.0010) (0.0010)

Num. Available Boxes −0.0373∗∗∗ 0.0054∗∗ 0.0028
(0.0011) (0.0022) (0.0019)

SPNE Moves left −0.0805∗∗∗ −0.0898∗∗∗ −0.0851∗∗∗

(0.0012) (0.0038) (0.0033)

Square Game State 0.0978∗∗∗

(0.0184)

Nx2 Game State 0.0017
(0.0264)

Observations 5,555 5,555 5,555 5,555
Adjusted R2 0.3489 0.4580 0.4593 0.4624

Note: Standard errors are clustered at the subject level, and subject fixed effects are
included. Significance: *** p<0.01, ** p<0.05, * p<0.1.

Table 3: Effects of Complexity on SPNE Consistent Move

The negative and statistically significant coefficients for the number of available boxes in model
1 and for moves left in model 2 imply that subjects are less likely to make winning moves when the
game is more complex. Model 3 presents a more surprising result: when controlling for the number
of moves left to the end of the game, the relationship between the number of available boxes and the
likelihood of making a winning move is positive, albeit small. However, this relationship disappears
when we control for the “shape” of the game, as captured by dummies for the current grid being
either a square or having two columns. Thus, in the Game of Chomp, the distance to the end of
the game is a more relevant measure of complexity than the number of options available to the
decision-maker.

The fact that the ability to implement the SPNE strategy depends strongly on the distance to
the end of the game and only weakly on the number of available moves speaks directly to the
complexity literature discussed in Section 2. In particular, our results line up closely with Pycia
and Troyan (2023)’s emphasis on planning horizons and limited foresight. They further reinforce
the idea, advanced by Rampal (2022) and Rampal (2025), that limitations to foresight should be
explicitly incorporated into behavioral equilibrium concepts.
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In order to further explore the prevalence of limited backward induction in our sample, we
classify subjects according to the distance to the end of the game at which they are able to implement
the SPNE strategy. Specifically, we say that a subject’s Foresight Level12 is k if they choose a
winning move (i.e., a move that preserves a win according to SPNE) at least 70% of the time when
the end of the game is at most k turns away, and less than 70% of the time when it is further away.13

Thus, a subject with Foresight Level 1 tends to make a winning move when they can win the game
in the current round, but not when they could guarantee themselves a win only by their next move.14

In all cases, we restrict attention to choices made from winning positions.
Figure 5 shows the distribution of Foresight Levels in our sample.15 The vast majority of subjects

have Foresight Levels of either 3 or 5, suggesting that they can evaluate contingencies a few turns
into the future, but not much further. Similar patterns appear in other dynamic games. In Nim,
McKinney Jr and Van Huyck (2007) estimate a “rationality bound” and find that the average subject
can reason effectively only up to about rank 6, with substantial heterogeneity across subjects. In the
Game of 21 and the Race Game, Dufwenberg et al. (2010) and Gneezy et al. (2010) likewise report
that behavior is close to equilibrium only a few moves from the end of the game and deteriorates
further away. Our Foresight Levels, which cluster at three to five moves, are thus broadly in line
with earlier evidence on finite planning horizons in dynamic games.
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Figure 5: Subjects’ Foresight Level at threshold 0.7

12We borrow this terminology from Rampal (2022).
13The cutoff of 70% was chosen arbitrarily. Appendix Figure 13 shows the classifications for cutoffs of 50% and

80%, respectively.
14A Foresight Level of 0 indicates that the subject chooses correctly less than 70% of the time even when they could

win in the current round.
15Because of the structure of the Game of Chomp, Foresight Levels are necessarily odd: winning moves can only be

made in game states that are an odd number of turns away from the end of the game according to SPNE.
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Appendix Table 8 explores the correlation between survey responses and optimal behavior in
our experiment. The dependent variable in column (1) is a binary indicator for making a choice
consistent with SPNE (restricting to observations where the player is in a winning position), while
the dependent variable in column (2) is the Foresight Level that we calculate for the subject. We
find consistent results in both regressions. Conditional on all the covariates, being male is associated
with a 5% increase in the likelihood of making a choice consistent with SPNE and a 0.67 higher
Foresight Level. Each additional point on the CRT score is associated with a 5% increase in the
likelihood of making a choice consistent with SPNE and a 0.30 higher Foresight Level. No other
covariates have statistically significant coefficients.

6.2 Learning the Game of Chomp

In this section, we discuss how subjects’ behavior changed as they gained more experience. Previous
research has shown that, in many repeated games, subjects’ play tends to move closer to Nash
equilibrium as they gain experience (see, e.g., Van Huyck et al. (1991); Nagel (1995); Camerer and
Hua Ho (1999)). Moreover, this learning extends to playing closer to subgame perfection (Gneezy
et al., 2010; McKinney Jr and Van Huyck, 2013). The positive coefficient on Match Number in
Table 3 is consistent with this: subjects make winning moves more often when they have more
experience.

The Game of Chomp provides a unique and rich setting to study how decision-makers learn to
play subgame perfect equilibrium. The game involves very simple game states, where the player is
only a few moves away from winning, and complex game states for which even experts might have
difficulty finding the optimal move.

Result 4. Subjects’ consistency with SPNE increases with experience, and this improvement is
concentrated in subgames of intermediate complexity.

We measure learning effects by using the indicator dependent variable “SPNE Consistent Move,”
and then binning game states by SPNE Moves Left, as shown in Table 4. Observations are restricted
to moves at winning positions (and, thus, where the number of moves left until the end of the game
is odd). The states of the game were categorized as having 3–5, 7–9, or more than 11 moves left
to the end node of the game, with the corresponding dummy variables shown in the regression.16

Interaction terms between the aforementioned dummy variables and the independent variable Match

Number are also included. The baseline is when a move that wins the game is available in the current
round.

16In Appendix Table 7, we reproduce these results using the number of boxes left instead of the number of moves left
as the game state. The interpretation is largely the same: learning is concentrated in games of intermediate complexity.
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Dependent variable: SPNE Consistent Move

MS RO
Intercept 0.9716∗∗∗ 0.9659∗∗∗

(0.0117) (0.0171)
3-5 Moves −0.4051∗∗∗ −0.3736∗∗∗

(0.0393) (0.0412)
7–9 Moves −0.7613∗∗∗ −0.7322∗∗∗

(0.0488) (0.0626)
More than 11 Moves −0.8525∗∗∗ −0.9358∗∗∗

(0.0283) (0.0243)
Match Number 0.0011 0.0017

(0.0009) (0.0011)
3–5 Moves × Match Number 0.0147∗∗∗ 0.0086∗∗∗

(0.0029) (0.0028)
7–9 Moves × Match Number 0.0050 0.0011

(0.0037) (0.0042)
More than 11 Moves × Match Number −0.0018 −0.0010

(0.0022) (0.0015)

Observations 3461 2094
Adjusted R² 0.4604 0.5206

Note: Standard errors are clustered at the subject level.
Significance: *** p<0.01, ** p<0.05, * p<0.1.

Table 4: SPNE Consistent Move at different number of Moves Left

The patterns are similar across the two treatments. In both MS and RO, the coefficients on all
distance-to-end dummies are negative and statistically significant at the 1% level, indicating that
subjects are less likely to make a winning (SPNE-consistent) move when the game state is farther
from the end node. When game states have 3–5 moves remaining, the probability of making a
winning move falls by 0.41 in MS and 0.37 in RO relative to the baseline. When the game has 7–9
moves left, the probability decreases by over 0.70 in both treatments. For states with more than 11
moves left, the coefficients are even larger in magnitude (0.85 in MS and 0.94 in RO), reducing the
probability of a winning move close to zero.

The coefficient on Match Number is positive but close to zero and not statistically significant,
implying little detectable learning for states that are a single move away from the end of the game.17

The interaction terms provide more insight into how learning varies across states, and they are
generally consistent with Hypothesis 4. Subjects show some improvement in states that are a few
moves from the end of the game: the interaction coefficients for states with 3–5 moves remaining are
positive, and statistically significant at the 1% level. The coefficient implies that the probability of
making an optimal choice increases by roughly 20 percentage points by the end of the experiment.

17This is not surprising, as the probability of making a winning move is already near one in these states.
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By contrast, learning appears weaker and is statistically insignificant when there are 7–9 moves or
more than 11 moves left.

6.3 L-shaped Games and the (2, 2) Heuristic

This subsection reports an exploratory analysis of a pattern that emerged clearly in the data but that
we did not foresee: the pervasive use of the move (2,2) as an opening and the role of the resulting
L-shaped games.

Since all the grid sizes used in the experiment are smaller than 8× 10, there is a unique optimal
initial choice for each grid size. For instance, the optimal initial choice for a 2× 2 grid is (2, 2), and
making this move guarantees Player 1 a sure win; for a 3 × 2 grid, the move (3, 2) is optimal. As
noted in Section 3, while (2, 2) is the optimal first move for all square grids, it is never the optimal
first move for any non-square grid.

Figure 6 shows players’ first move in all grid sizes from the MS treatment.18 The bottom (striped)
portion of each bar represents the proportion of choices that were consistent with SPNE. The SPNE-
consistent initial choice was only chosen higher than 50% of the time in 2 × 2 and 3 × 2 games.
Despite being suboptimal in all non-square games, (2, 2) is the most prevalent choice for all grid
sizes other than 3 × 2 and 4 × 2. It is also the most popular initial move in the RO treatment,
indicating that subjects started suboptimally and, according to SPNE, lost their initial advantage of
being Player 1.

18The equivalent results for the RO treatment, which does not show substantive differences, can be found in Appendix
Figure 14.
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Figure 6: Proportion of initial choice by grid size in MS treatment

A more surprising result is that the rate of Player 1 winning when choosing (2, 2) as initial move
is relatively high in both treatments, even for rectangular games. These rates are shown in Figure
7. In MS, the winning proportion is higher than 0.5 for most grid sizes; the only cases this does not
hold are rectangular games with two columns, where the optimal initial choice is the bottom right
box, as well as 5 × 3 and 8 × 3 games. In RO treatment, the exceptions are all games with two
columns and the 6× 3 game.
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Figure 7: Winning proportion when choosing initial choice (2, 2) by grid sizes

We refer to the game state that results from choosing the box at (2,2) as an L-shaped game.
Throughout the experiment, 35% of games eventually reached an L-shaped game. Because L-shaped
games are both empirically prevalent and (relatively) strategically straightforward, we further study
how subjects learned and performed in them. Figure 8 shows the proportion of winning moves made
by 124 subjects in L-shaped games. Six subjects never made an optimal choice, while nine played
perfectly. Roughly 60% of the subjects have a probability of making a winning move in L-shaped
games of more than 0.5. This might explain why the winning proportions while choosing (2,2) as
initial move are relatively high. Many subjects learned to play L-shaped games optimally.19

19Column (3) of Appendix Table 8 reports the results of a linear regression analysis of the probability of making a
winning move in L-shaped games, based on the subjects’ demographic information. Similar to the relationship between
demographics and making optimal moves more generally, both the indicator for being male and the CRT score are
positively related to the likelihood of choosing optimally in L-shaped games.
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Figure 8: Probability of making a winning move in L-shaped games

Taken together, these findings suggest that many subjects adopt a simple (2, 2) opening heuristic:
they frequently choose (2,2) as an initial move, even when it is not SPNE-optimal, in order to
transform diverse starting boards into a familiar class of L-shaped games. Because a large share of
subjects learn to play these L-shaped subgames close to optimally, this heuristic remains profitable
in practice and yields relatively high win rates for Player 1, even on rectangular boards where (2,2)
is theoretically suboptimal. This pattern complements our earlier evidence on limited foresight:
rather than computing optimal play from each initial state, subjects appear to reshape the game into
strategically simpler subgames where they understand how to play optimally.

7 Conclusion

In this paper, we reported the results of an experiment implementing the Game of Chomp. Subjects
played repeatedly with random partners and initial game states. They do not play according to
SPNE: even when they could guarantee themselves a win, they often fail to choose an optimal
move. We explored this behavior further and found that the ability to choose optimally decreases
with the number of steps until the end of the game, but that subjects learn to play closer to optimally
over the course of the experiment. Finally, we documented a simple heuristic that subjects appear
to use to simplify the game, transforming a variety of boards into a familiar class of positions that
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they can play relatively well.
Our results have implications for behavioral and experimental game theory. At a basic level,

they suggest that limited foresight is a key feature that needs to be incorporated into equilibrium
concepts for dynamic games, supporting approaches such as that in Rampal (2022). More broadly,
systematic deviations from SPNE should be taken into account both in dynamic mechanism design
and when empirically analyzing dynamic games. Finally, our approach provides a simple tool for
evaluating sequential rationality that is easy to implement and explain. We expect this to be useful
in future work studying learning and the transfer of behavior across related dynamic environments.
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A Additional Empirical Results
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Figure 9: Timeouts by number of available boxes. This figure shows the proportion of timeouts at
different number of available boxes. Timeouts are less likely to occur when game states have fewer
than four boxes.

Mean Std. Dev.

CRT Score 1.40 1.17
Male 0.41 0.49
Age 23.27 4.87
English 0.20 0.40
Economics 0.33 0.47
Subjects 124.00
Note: CRT Score is the number of correct
answers on a Cognitive Reflection Test,
ranging from 0 to 3. Male, English, and
Economics are equal to one if the sub-
jects report being male, speaking English
as a first language, and majoring in Eco-
nomics, respectively.

Table 5: Summary statistics
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Figure 10: Proportion of winning as Player 1. This figure shows the distribution of subjects’ win
rates as Player 1 across the two treatments.

Dependent variable: Player 1 Winning
LPM (1) LPM (2)

Intercept 0.5694∗∗∗ 0.4477∗∗∗

(0.0437) (0.0452)
Square 0.1982∗∗∗ 0.0045

(0.0363) (0.0420)
Nx2 Grid −0.0485 −0.1156∗∗∗

(0.0400) (0.0375)
Num. Available Boxes −0.0044∗∗ 0.0003

(0.0018) (0.0019)
First Move SPNE 0.4215∗∗∗

(0.0414)

Observations 1282 1282
Adjusted R² 0.0265 0.1116

Note: Standard errors are clustered at the subject level.
Significance: *** p<0.01, ** p<0.05, * p<0.1.

Table 6: Effects of initial game state on winning probability.
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Figure 11: Relationship between complexity measures and making a winning move. The proportion
of moves that are consistent with SPNE is generally decreasing with both complexity measures.
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Figure 12: Average time spent by game state. This figure summarizes the average time spent at
different game states, either by number of boxes (panel (a)) or moves left (panel (b)). Subjects spent
less time when there are fewer than 4 boxes left and when there are 3 moves left until the terminal
state of the game. On average, subjects spent around 20 seconds making a choice.
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Figure 13: Foresight Levels. Panels (a) and (b) show the distribution of Foresight Levels (see text
for definition) using thresholds of 0.5 and 0.8, respectively. With a 0.5 threshold, Foresight Levels
range from 0 to 9; with a 0.8 threshold, they range from 1 to 5. One subject has Foresight Level 0 at
the 0.5 threshold, meaning she chooses optimally less than 50% of the time even when the game is
one move from the terminal state.

Dependent variable: SPNE Consistent Move

MS RO
Intercept 0.9317∗∗∗ 0.9349∗∗∗

(0.0150) (0.0194)
5–9 Boxes −0.5425∗∗∗ −0.4754∗∗∗

(0.0442) (0.0501)
More than 10 Boxes −0.7735∗∗∗ −0.8543∗∗∗

(0.0281) (0.0314)
Match Number 0.0036∗∗∗ 0.0023∗

(0.0010) (0.0013)
5–9 Boxes × Match Number 0.0127∗∗∗ 0.0063∗

(0.0035) (0.0033)
More than 10 Boxes × Match Number −0.0031 −0.0000

(0.0023) (0.0021)

Observations 3461 2094
Adjusted R² 0.4833 0.5103

Note: Standard errors are clustered at the subject level.
Significance: *** p<0.01, ** p<0.05, * p<0.1.

Table 7: Learning by number of boxes left. This table reproduces the results from Table 4, using
the number of boxes instead of number of moves left as the game’s state. The results are consistent
with those in the text, with learning concentrated in game states of intermediate complexity.
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Figure 14: Proportion of initial choice by grid size in RO. Box (2,2) is the most popular initial choice
in most grid sizes, excluding grids 3× 2 and 4× 2. For grid size 8× 3, subjects never chose optimal
choice (5,2) as their initial choice.

31



(1) (2) (3)

Intercept 0.4861∗∗∗ 2.7141∗∗∗ 0.6264∗∗∗

(0.0664) (0.8724) (0.0882)
Male 0.0516∗∗ 0.6703∗∗ 0.0828∗∗

(0.0234) (0.2700) (0.0337)
Age 0.0000 0.0056 −0.0022

(0.0028) (0.0354) (0.0039)
English −0.0460 −0.4549 −0.0256

(0.0279) (0.2815) (0.0433)
Economics 0.0044 −0.1128 0.0326

(0.0270) (0.2932) (0.0387)
CRT Score 0.0453∗∗∗ 0.2989∗∗∗ 0.0670∗∗∗

(0.0088) (0.1088) (0.0132)

Observations 5555 124 1275
Adjusted R² 0.0149 0.0913 0.0339

Note: Standard errors are clustered at the subject level.
(1) SPNE Consistent Move, (2) Foresight Level,
(3) SPNE Consistent Move in L-shaped Game.
Significance: *** p<0.01, ** p<0.05, * p<0.1.

Table 8: Relationship between demographics and consistency with SPNE. Controlling for all co-
variates, CRT score and being male are positively and statistically significantly associated with all
three consistency measures, while age, speaking English as a first language, and being an economics
major are not significantly related to any of them.
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B Screenshots from the experiment

Figure 15: Introduction page

Figure 16: Instruction page
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Figure 17: Instruction page (cont)

Figure 18: Choice page of Player 1
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Figure 19: Choice page of Player 2

Figure 20: Result page for winner in each match

Figure 21: Result page for loser in each match
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Figure 22: Payoff for winner in the experiment

Figure 23: Payoff for loser in the experiment

Figure 24: Demographics Page
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Figure 25: Cognitive Reflection Test

Figure 26: Experiment Feedback Page
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